High permeability and low temperature correlates with proximity to brittle failure within mountains at an active tectonic boundary, Manapouri tunnel, Fiordland, New Zealand

2014 ◽  
Vol 389 ◽  
pp. 176-187 ◽  
Author(s):  
Phaedra Upton ◽  
Rupert Sutherland
2003 ◽  
Vol 769 ◽  
Author(s):  
C. K. Liu ◽  
P. L. Cheng ◽  
S. Y. Y. Leung ◽  
T. W. Law ◽  
D. C. C. Lam

AbstractCapacitors, resistors and inductors are surface mounted components on circuit boards, which occupy up to 70% of the circuit board area. For selected applications, these passives are packaged inside green ceramic tape substrates and sintered at temperatures over 700°C in a co-fired process. These high temperature processes are incompatible with organic substrates, and low temperature processes are needed if passives are to be embedded into organic substrates. A new high permeability dual-phase Nickel Zinc Ferrite (DP NZF) core fabricated using a low temperature sol-gel route was developed for use in embedded inductors in organic substrates. Crystalline NZF powder was added to the sol-gel precursor of NZF. The solution was deposited onto the substrates as thin films and heat-treated at different temperatures. The changes in the microstructures were characterized using XRD and SEM. Results showed that addition of NZF powder induced low temperature transformation of the sol-gel NZF phase to high permeability phase at 250°C, which is approximately 350°C lower than transformation temperature for pure NZF sol gel films. Electrical measurements of DP NZF cored two-layered spiral inductors indicated that the inductance increased by three times compared to inductors without the DP NZF cores. From microstructural observations, the increase is correlated with the changes in microstructural connectivity of the powder phase.


2017 ◽  
Author(s):  
Alison R. Duvall ◽  
◽  
Camille Collett ◽  
Rebecca M. Flowers ◽  
Gregory E. Tucker ◽  
...  
Keyword(s):  

1973 ◽  
Vol 5 (3) ◽  
pp. 274-280 ◽  
Author(s):  
V. T. Troshchenko ◽  
V. V. Pokrovskii

2018 ◽  
Vol 31 (4) ◽  
pp. 281
Author(s):  
Michael Heads

This paper analyses biogeography and ecology in the grass Simplicia, endemic to New Zealand, with respect to tectonic geology and to distributions in other groups of plants and animals. There are disjunctions and phylogenetic breaks at the Oparara basin (north-west Nelson), the Western Province–Eastern Province tectonic boundary, the Alpine fault and the Waihemo fault zone (Otago). Distribution boundaries at these localities recur in many other taxa and coincide spatially with important fault zones. General aspects of distribution and evolution in Simplicia are addressed, using a set of critical questions posed by McGlone (2015) as a conceptual framework. The biogeographic evidence suggests that the divergence of Simplicia and of its species took place by vicariance, and that this was mediated by tectonics. All individual plants of Simplicia have dispersed to their present locality, but there is no evidence that chance dispersal with founder speciation has occurred in the genus. Trends in these grasses, such as spikelet reduction, are global and have evolved in many different environments over tens of millions of years. This suggests that non-random mutation has been more important than environment and natural selection in directing the course of evolution.


Author(s):  
J. B. Wright

SummaryEarlier palaeomagnetic studies on the Dunedin volcano showed that a portion of the sequence is reversely or anomalously magnetized. Some of the rocks used for palaeomagnetic study were subsequently classified into groups according to their thermomagnetic behaviour (unpublished work).Cell dimensions and Curie-point curves have been measured for oxides separated from representative rocks of each group. The oxides are mostly homogeneous titanomagnetites containing between 40 and 55 mol. % of ulvöspinel, with a generally small degree of late low-temperature alteration. X-ray and thermomagnetic data also suggest that there was some early oxidation to titanomaghemite, probably during cooling.The thermomagnetic behaviour of rocks classified in the different groups is attributed to variable oxidation of the titanomagnetite during thermomagnetic treatment. The high Curie points of rocks used for palaeomagnetic studies may often be due merely to oxidation of titaniferous magnetite and not to nearly pure primary Fe3O4. Since there is insufficient oxidation in the lavas examined for any currently accepted self-reversal process to have been operative, the reversely magnetized part of the Dunedin sequence was probably erupted during a reversed polarity epoch, possibly between about 13 and 11 million years ago.The basanitic lavas contain minor amounts of chromiferous spinel, as inclusions in silicate phenocrysts and as cores to separate microphyric titanomagnetite; its significance is briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document