Soil moisture balance and magnetic enhancement in loess–paleosol sequences from the Tibetan Plateau and Chinese Loess Plateau

2015 ◽  
Vol 409 ◽  
pp. 120-132 ◽  
Author(s):  
Pengxiang Hu ◽  
Qingsong Liu ◽  
David Heslop ◽  
Andrew P. Roberts ◽  
Chunsheng Jin
2005 ◽  
Vol 2 (2) ◽  
pp. 137-145 ◽  
Author(s):  
Yougui Song ◽  
Jijun Li ◽  
Xiaomin Fang ◽  
Fei Xia ◽  
Hongmei Dong

2017 ◽  
Vol 49 (4) ◽  
pp. 1255-1270 ◽  
Author(s):  
Bowei Yu ◽  
Gaohuan Liu ◽  
Qingsheng Liu ◽  
Jiuliang Feng ◽  
Xiaoping Wang ◽  
...  

Abstract Large gullies occur globally and can be classified into four main micro-topographic types: ridges, plane surfaces, pipes and cliffs. Afforestation is an effective method of controlling land degradation worldwide. However, the combined effects of afforestation and micro-topography on the variability of soil moisture remain poorly understood. The primary objectives of this study were to determine whether afforestation affects the spatial pattern of the root-zone (0–100 cm) soil moisture and whether soil moisture dynamics differ among the micro-topographic types in gully areas of the Chinese Loess Plateau. The results showed that in the woodland regions, the spatial mean moisture values decreased by an average of 6.2% and the spatial variability increased, as indicated by the standard deviation (17.1%) and the coefficient of variation (22.2%). In general, different micro-topographic types exerted different influences on soil moisture behavior. The plane surface presented the largest average soil moisture values and the smallest spatial variability. The lowest soil moisture values were observed in the ridge, mainly due to the rapid drainage of these areas. Although pipe woodland region can concentrate surface runoff during and after rainfall, the larger trees growing in these areas can lead to increased soil moisture evapotranspiration.


2018 ◽  
Vol 32 (12) ◽  
pp. 1738-1754 ◽  
Author(s):  
Zhao Jin ◽  
Li Guo ◽  
Henry Lin ◽  
Yunqiang Wang ◽  
Yunlong Yu ◽  
...  

2014 ◽  
Vol 81 (3) ◽  
pp. 433-444 ◽  
Author(s):  
Yougui Song ◽  
Xiaomin Fang ◽  
John W. King ◽  
Jijun Li ◽  
Ishikawa Naoto ◽  
...  

AbstractA high-resolution rock magnetic investigation was performed on the Chaona Quaternary loess/paleosol sequences in the Central Chinese Loess Plateau. Based on a newly developed independent unturned time scale and magnetic records, we reconstructed the history of the East Asia monsoons during the last 3 Ma and explored the middle Pleistocene climate transition (MPT). Rock magnetic results show that the loess layers are characterized by relatively high coercivity and remanent coercivity, lower magnetic susceptibility (MS), and that the paleosol layers are characterized by relatively high MS, saturation magnetization and remanent saturation magnetization. Spectrum analyses indicate that there are various periods in addition to orbital periodicities. According to the onset and stable appearance of 100 kyr period, we consider that the MPT recorded in this section began at ~ 1.26 Ma and was completed by ~ 0.53 Ma, which differs from previous investigations based on orbitally tuned time scales. The forcing mechanism for the MPT was more complicated than just the orbital forcing. We conclude that the rapid uplift of the Tibetan Plateau may have played an important role in the shift of periodicities during the middle Pleistocene.


2020 ◽  
Vol 538 ◽  
pp. 109446 ◽  
Author(s):  
Chengcheng Ye ◽  
Yibo Yang ◽  
Xiaomin Fang ◽  
Jinbo Zan ◽  
Mengqi Tan ◽  
...  

2019 ◽  
Vol 50 (5) ◽  
pp. 1453-1462
Author(s):  
Qian Zhao ◽  
Lei Yang ◽  
Xin Wang ◽  
Runcheng Bi ◽  
Qindi Zhang

Abstract Understanding the effects of vegetation on soil moisture is vital to the ecosystem restoration in water-restricted areas. For this study, the effects of introduced revegetation and natural revegetation on soil water (0–1.8 m) were investigated in the Chinese Loess Plateau, which was based on an in situ vegetation removal experiment and two years of soil moisture monitoring. The results indicated that under introduced revegetation, pasture grassland had lower soil moisture but higher temporal variations over the growing season. Compared with abandoned farmlands and native grasslands under natural revegetation, pasture grasslands revealed greater negative effects on deep soil moisture (1–1.8 m), which was difficult to recover following soil desiccation. In contrast, for abandoned farmlands and native grasslands, the surface soil moisture (0–0.4 m) was mainly impacted, which was easily replenished through rainfall events. These outcomes implied that natural revegetation, rather than introduced revegetation, should be the first choice in water-limited regions toward the rehabilitation of degraded ecosystems.


Geology ◽  
2011 ◽  
Vol 39 (11) ◽  
pp. 1031-1034 ◽  
Author(s):  
A. Pullen ◽  
P. Kapp ◽  
A. T. McCallister ◽  
H. Chang ◽  
G. E. Gehrels ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document