High resolution 3-D crustal structure beneath NE China from joint inversion of ambient noise and receiver functions using NECESSArray data

2015 ◽  
Vol 416 ◽  
pp. 1-11 ◽  
Author(s):  
Zhen Guo ◽  
Y. John Chen ◽  
Jieyuan Ning ◽  
Yongge Feng ◽  
Stephen P. Grand ◽  
...  
2020 ◽  
Vol 222 (3) ◽  
pp. 1671-1685 ◽  
Author(s):  
Clinton D Koch ◽  
Colton Lynner ◽  
Jonathan Delph ◽  
Susan L Beck ◽  
Anne Meltzer ◽  
...  

SUMMARY The Ecuadorian forearc is a complex region of accreted terranes with a history of large megathrust earthquakes. Most recently, a Mw 7.8 megathrust earthquake ruptured the plate boundary offshore of Pedernales, Ecuador on 16 April 2016. Following this event, an international collaboration arranged by the Instituto Geofisico at the Escuela Politécnica Nacional mobilized a rapid deployment of 65 seismic instruments along the Ecuadorian forearc. We combine this new seismic data set with 14 permanent stations from the Ecuadorian national network to better understand how variations in crustal structure relate to regional seismic hazards along the margin. Here, we present receiver function adaptive common conversion point stacks and a shear velocity model derived from the joint inversion of receiver functions and surface wave dispersion data obtained through ambient noise cross-correlations for the upper 50 km of the forearc. Beneath the forearc crust, we observe an eastward dipping slow velocity anomaly we interpret as subducting oceanic crust, which shallows near the projected centre of the subducting Carnegie Ridge. We also observe a strong shallow positive conversion in the Ecuadorian forearc near the Borbon Basin indicating a major discontinuity at a depth of ∼7 km. This conversion is not ubiquitous and may be the top of the accreted terranes. We also observe significant north–south changes in shear wave velocity. The velocity changes indicate variations in the accreted terranes and may indicate an increased amount of hydration beneath the Manabí Basin. This change in structure also correlates geographically with the southern rupture limit of multiple high magnitude megathrust earthquakes. The earthquake record along the Ecuadorian trench shows that no event with a Mw >7.4 has ruptured south of ∼0.5°S in southern Ecuador or northern Peru. Our observations, along with previous studies, suggest that variations in the forearc crustal structure and subducting oceanic crust may influance the occurrence and spatial distribution of high magnitude seismicity in the region.


Tectonics ◽  
2018 ◽  
Vol 37 (11) ◽  
pp. 4226-4238 ◽  
Author(s):  
Zhiqiang Liu ◽  
Chuntao Liang ◽  
Qian Hua ◽  
Ying Li ◽  
Yihai Yang ◽  
...  

2019 ◽  
Vol 751 ◽  
pp. 41-53 ◽  
Author(s):  
Carolina Buffoni ◽  
Martin Schimmel ◽  
Nora Cristina Sabbione ◽  
María Laura Rosa ◽  
Gerardo Connon

2021 ◽  
Author(s):  
Matteo Scarponi ◽  
György Hetényi ◽  
Jaroslava Plomerová ◽  
Stefano Solarino

<p>We present results from a joint inversion study of new seismic and gravity data to constrain a 2D high-resolution image of one of the most prominent geophysical anomalies of the European Alps: the Ivrea geophysical body (IGB). Our work exploits both new data and multidisciplinary a priori constraints, to better resolve the shallow crustal structure in the Ivrea-Verbano zone (IVZ), where the IGB is known to reach anomalously shallow depths and partially outcrop at the surface.</p><p>A variety of previous studies, ranging from gravity surveys to vintage refraction seismics and recent local earthquake tomographies (Solarino et al. 2018, Diehl et al. 2009), provide comprehensive but spatially sparse information on the IGB structure, which we aim at investigating at higher resolution, along a linear profile crossing the IVZ. To this purpose, we deployed 10 broadband seismic stations (MOBNET pool, IG CAS Prague), 5 km spaced along a linear West-East profile, along Val Sesia and crossing Lago Maggiore. This network operated for 27 months and allowed us to produce a new database of ca. 1000 seismic high-quality receiver functions (RFs). In addition, we collected new gravity data in the IVZ, with a data coverage of 1 gravity point every 1-2 km along the seismic profile. The newly collected data was used to set up an inversion scheme, in which RFs and gravity anomalies are jointly used to constrain the shape and the physical property contrasts across the IGB interface.</p><p>We model the IGB as a single interface between far-field constraints, whose geometry is defined by the coordinates of four nodes which may vary in space, and  density and V<sub>S</sub> shear-wave velocity contrasts associated with the interface itself, varying independently. A Markov chain Monte Carlo (MCMC) sampling method with Metropolis-Hastings selection rule was implemented to efficiently explore the model space, directing the search towards better fitting areas.</p><p>For each model, we perform ray-tracing and RFs migration using the actual velocity structure both for migration and computation of synthetic RFs, to be compared with the observations via cross-correlation of the migration images. Similarly, forward gravity modelling for a 2D density distribution is implemented and the synthetic gravity anomaly is compared with the observations along the profile. The joint inversion performance is the product of these two misfits.</p><p>The inversion results show that the IGB reaches the shallowest depths in the western part of the profile, preferentially locating the IGB interface between 3 and 7 km depth over a horizontal distance of ca. 20 km (between Boccioleto and Civiasco, longitudes 8.1 and 8.3). Within this segment, the shallowest point reaches up to 1 km below sea level. The found density and velocity contrasts are in agreement with rock physics properties of various units observed in the field and characterized in earlier studies.</p>


2020 ◽  
Author(s):  
Ehsan Qorbani ◽  
Dimitri Zigone ◽  
Mark R. Handy ◽  
Götz Bokelmann ◽  

Abstract. We study the crustal structure under the Eastern and Southern Alps using ambient noise tomography. We use cross-correlations of ambient seismic noise between pairs of 71 permanent stations and 19 stations of the EASI profile to derive new high-resolution 3-D shear-velocity models for the crust. Continuous records from 2014 and 2015 are cross-correlated to estimate Green's functions of Rayleigh and Love waves propagating between the station pairs. Group velocities extracted from the cross-correlations are inverted to obtain isotropic 3-D Rayleigh and Love-wave shear-wave velocity models. Our high resolution models image several velocity anomalies and contrasts and reveal details of the crustal structure. Velocity variations at short periods correlate very closely with the lithologies of tectonic units at the surface and projected to depth. Low-velocity zones, associated with the Po and Molasse sedimentary basins, are imaged well to the south and north of the Alps, respectively. We find large high-velocity zones associated with the crystalline basement that forms the core of the Tauern Window. Small-scale velocity anomalies are also aligned with geological units such as the Ötztal and the Gurktal nappes of the Austroalpine nappes. Clear velocity contrasts in the Tauern Window along vertical cross-sections of the velocity model show the depth extent of the tectonic units and their bounding faults. A mid-crustal velocity contrast is interpreted as a manifestation of intracrustal decoupling in the Eastern Alps and decoupling between the Southern and Eastern Alps.


2017 ◽  
Vol 122 (2) ◽  
pp. 1179-1197 ◽  
Author(s):  
E. J. Rindraharisaona ◽  
F. Tilmann ◽  
X. Yuan ◽  
G. Rümpker ◽  
J. Giese ◽  
...  

2021 ◽  
Author(s):  
Xu Wang ◽  
Ling Chen ◽  
Morteza Talebian ◽  
Yinshuang Ai ◽  
Mingming Jiang ◽  
...  

<p>The crustal structure of the Iranian Plateau bears important information about the details of the tectono-magmatic processes associated with the Neo-Tethys subduction and subsequent Arabia-Eurasia collision. Using a newly developed method of joint inversion of multi-frequency waveforms around and horizontal-to-vertical (H/V) ratios of the direct P arrivals in teleseismic P-wave receiver functions, we construct the shear-wave velocity image of the shallow crust (from surface up to 10-km depth below sea level) along a dense seismic array across the Zagros suture in the northwest Iranian Plateau. The most striking structural feature of the study region is the presence of low- and high-velocity anomalies (LVAs and HVAs) beneath the Zagros fold-and-thrust belt and the Iranian continent, respectively, indicating strong structural differences on the two sides of the suture. Systematic analysis on the velocity estimates and comparison with laboratory measurements and regional geology suggest that the LVAs and HVAs are representatives of Zagros sedimentary rocks and arc to intraplate magmatic rocks, respectively. The LVAs (1.3-2.0 km/s) are characterized by a series of faulted anti-form structures at ~1-7 km depths beneath Zagros. They are likely dominantly composed of shales and mudstones, and could have acted as mechanically weaknesses to accommodate different deformations of surroundings and give rise to the present-day depth-dependent seismicity. The HVAs beneath the central domain and Alborz in the Iranian continent present large ranges in both velocity (3.2-3.9 km/s) and depth (0-10 km), probably suggesting strong lithological variations in these areas. Most of the HVAs above 5-km depth have shear-wave velocities of 3.2 to 3.6 km/s, comparable to those of andesites and basalts dominated in the northwestern Iranian plateau. The deeper HVAs (below 5-km depth), which generally have greater velocities ~3.6-3.9 km/s falling into the velocity range of intrusive rocks such as granodiorites, diorites and diabases, appear to have much larger volumes at depth than that exposed on the surface in the study region. Moreover, the surface projections of the HVAs are spatially coincident with the major faults or tectonic boundaries of the region, suggesting a causal link. Our observations provide evidence for not only the lithology-controlled layering in both sedimentary structure and deformation in the Zagros passive margin but also the much more substantial magma generation and emplacement at depth than faulting-facilitated eruption and exposure on the surface in the Iranian active margin during the subduction and collision processes.</p>


Sign in / Sign up

Export Citation Format

Share Document