scholarly journals Testing the occurrence of Late Jurassic true polar wander using the La Negra volcanics of northern Chile

2020 ◽  
Vol 529 ◽  
pp. 115835 ◽  
Author(s):  
Roger R. Fu ◽  
Dennis V. Kent ◽  
Sidney R. Hemming ◽  
Pablo Gutiérrez ◽  
Jessica R. Creveling
2021 ◽  
Vol 567 ◽  
pp. 117012
Author(s):  
Yangjun Gao ◽  
Shihong Zhang ◽  
Hanqing Zhao ◽  
Qiang Ren ◽  
Tianshui Yang ◽  
...  

Geology ◽  
2019 ◽  
Vol 47 (12) ◽  
pp. 1112-1116 ◽  
Author(s):  
Zhiyu Yi ◽  
Yongqing Liu ◽  
Joseph G. Meert

Abstract A drastic environmental change occurred during the Middle to Late Jurassic as much of East Asia transitioned from a wet seasonal to an extremely arid climate. The timing, scope, and especially mechanism for this aridification are contentious. In this study, we report paleomagnetic data and ages from Jurassic volcanic rocks in North China and for the first time reveal a large-scale southward displacement of ∼25° for the Eastern Asian blocks (EABs) sometime between 174 ± 6 Ma and 157 ± 4 Ma. We suggest that the rapid motion documented by our paleomagnetic studies resulted from large-scale true polar wander (TPW). The TPW rotation displaced the EABs from the Northern Hemisphere humid-temperate belt into the subtropical/tropical arid zone. The resultant latitudinal motion coincided with a remarkable environmental change recorded over 10,000,000 km2 in East Asia between ca. 165 Ma and 155 Ma. We call the climate transition the “Great Jurassic East Asian Aridification” and argue that TPW-induced climatic shifts were also responsible for the demise of the Yanliao Biota and subsequent radiation of the Jehol Biota during the Late Jurassic and Early Cretaceous.


2002 ◽  
Vol 107 (B10) ◽  
pp. ETG 16-1-ETG 16-17 ◽  
Author(s):  
R. Sabadini ◽  
A. M. Marotta ◽  
R. De Franco ◽  
L. L. A. Vermeersen

Science ◽  
2000 ◽  
Vol 288 (5475) ◽  
pp. 2283a-2283 ◽  
Author(s):  
R. D. Cottrell

2019 ◽  
Vol 56 (9) ◽  
pp. 917-931
Author(s):  
Jafar Arkani-Hamed

The core dynamos of Mars and the Moon have distinctly different histories. Mars had no core dynamo at the end of accretion. It took ∼100 Myr for the core to create a strong dynamo that magnetized the martian crust. Giant impacts during 4.2–4.0 Ga crippled the core dynamo intermittently until a thick stagnant lithosphere developed on the surface and reduced the heat flux at the core–mantle boundary, killing the dynamo at ∼3.8 Ga. On the other hand, the Moon had a strong core dynamo at the end of accretion that lasted ∼100 Myr and magnetized its primordial crust. Either precession of the core or thermochemical convection in the mantle or chemical convection in the core created a strong core dynamo that magnetized the sources of the isolated magnetic anomalies in later times. Mars and the Moon indicate dynamo reversals and true polar wander. The polar wander of the Moon is easier to explain compared to that of Mars. It was initiated by the mass deficiency at South Pole Aitken basin, which moved the basin southward by ∼68° relative to the dipole axis of the core field. The formation of mascon maria at later times introduced positive mass anomalies at the surface, forcing the Moon to make an additional ∼52° degree polar wander. Interaction of multiple impact shock waves with the dynamo, the abrupt angular momentum transfer to the mantle by the impactors, and the global overturn of the core after each impact were probably the factors causing the dynamo reversal.


Sign in / Sign up

Export Citation Format

Share Document