Dynamic topography and the nature of deep thick plumes

Author(s):  
William D. Frazer ◽  
Jun Korenaga
Keyword(s):  
Geology ◽  
2000 ◽  
Vol 28 (11) ◽  
pp. 963-966 ◽  
Author(s):  
Paul Wheeler ◽  
Nicky White

Author(s):  
Mark Hoggard ◽  
Jacqueline Austermann ◽  
Cody Randel ◽  
Simon Stephenson

2019 ◽  
Vol 9 (1) ◽  
pp. 154-173
Author(s):  
I. Mintourakis ◽  
G. Panou ◽  
D. Paradissis

Abstract Precise knowledge of the oceanic Mean Dynamic Topography (MDT) is crucial for a number of geodetic applications, such as vertical datum unification and marine geoid modelling. The lack of gravity surveys over many regions of the Greek seas and the incapacity of the space borne gradiometry/gravity missions to resolve the small and medium wavelengths of the geoid led to the investigation of the oceanographic approach for computing the MDT. We compute two new regional MDT surfaces after averaging, for given epochs, the periodic gridded solutions of the Dynamic Ocean Topography (DOT) provided by two ocean circulation models. These newly developed regional MDT surfaces are compared to three state-of-theart models, which represent the oceanographic, the geodetic and the mixed oceanographic/geodetic approaches in the implementation of the MDT, respectively. Based on these comparisons, we discuss the differences between the three approaches for the case study area and we present some valuable findings regarding the computation of the regional MDT. Furthermore, in order to have an estimate of the precision of the oceanographic approach, we apply extensive evaluation tests on the ability of the two regional ocean circulation models to track the sea level variations by comparing their solutions to tide gauge records and satellite altimetry Sea Level Anomalies (SLA) data. The overall findings support the claim that, for the computation of the MDT surface due to the lack of geodetic data and to limitations of the Global Geopotential Models (GGMs) in the case study area, the oceanographic approach is preferable over the geodetic or the mixed oceano-graphic/geodetic approaches.


2017 ◽  
Vol 14 (23) ◽  
pp. 5425-5439 ◽  
Author(s):  
Wenchao Cao ◽  
Sabin Zahirovic ◽  
Nicolas Flament ◽  
Simon Williams ◽  
Jan Golonka ◽  
...  

Abstract. Paleogeographic reconstructions are important to understand Earth's tectonic evolution, past eustatic and regional sea level change, paleoclimate and ocean circulation, deep Earth resources and to constrain and interpret the dynamic topography predicted by mantle convection models. Global paleogeographic maps have been compiled and published, but they are generally presented as static maps with varying map projections, different time intervals represented by the maps and different plate motion models that underlie the paleogeographic reconstructions. This makes it difficult to convert the maps into a digital form and link them to alternative digital plate tectonic reconstructions. To address this limitation, we develop a workflow to restore global paleogeographic maps to their present-day coordinates and enable them to be linked to a different tectonic reconstruction. We use marine fossil collections from the Paleobiology Database to identify inconsistencies between their indicative paleoenvironments and published paleogeographic maps, and revise the locations of inferred paleo-coastlines that represent the estimated maximum transgression surfaces by resolving these inconsistencies. As a result, the consistency ratio between the paleogeography and the paleoenvironments indicated by the marine fossil collections is increased from an average of 75 % to nearly full consistency (100 %). The paleogeography in the main regions of North America, South America, Europe and Africa is significantly revised, especially in the Late Carboniferous, Middle Permian, Triassic, Jurassic, Late Cretaceous and most of the Cenozoic. The global flooded continental areas since the Early Devonian calculated from the revised paleogeography in this study are generally consistent with results derived from other paleoenvironment and paleo-lithofacies data and with the strontium isotope record in marine carbonates. We also estimate the terrestrial areal change over time associated with transferring reconstruction, filling gaps and modifying the paleogeographic geometries based on the paleobiology test. This indicates that the variation of the underlying plate reconstruction is the main factor that contributes to the terrestrial areal change, and the effect of revising paleogeographic geometries based on paleobiology is secondary.


2021 ◽  
Vol 11 (11) ◽  
pp. 5286
Author(s):  
Yihao Wu ◽  
Jia Huang ◽  
Hongkai Shi ◽  
Xiufeng He

Mean dynamic topography (MDT) is crucial for research in oceanography and climatology. The optimal interpolation method (OIM) is applied to MDT modeling, where the error variance–covariance information of the observations is established. The global geopotential model (GGM) derived from GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) gravity data and the mean sea surface model derived from satellite altimetry data are combined to construct MDT. Numerical experiments in the Kuroshio over Japan show that the use of recently released GOCE-derived GGM derives a better MDT compared to the previous models. The MDT solution computed based on the sixth-generation model illustrates a lower level of root mean square error (77.0 mm) compared with the ocean reanalysis data, which is 2.4 mm (5.4 mm) smaller than that derived from the fifth-generation (fourth-generation) model. This illustrates that the accumulation of GOCE data and updated data preprocessing methods can be beneficial for MDT recovery. Moreover, the results show that the OIM outperforms the Gaussian filtering approach, where the geostrophic velocity derived from the OIM method has a smaller misfit against the buoy data, by a magnitude of 10 mm/s (17 mm/s) when the zonal (meridional) component is validated. This is mainly due to the error information of input data being used in the optimal interpolation method, which may obtain more reasonable weights of observations than the Gaussian filtering method.


Eos ◽  
1989 ◽  
Vol 70 (28) ◽  
pp. 709
Author(s):  
Charles C. Kilgus ◽  
Johns Hopkins

2012 ◽  
Vol 60 (1) ◽  
pp. 41-48
Author(s):  
Alexandre Bernardino Lopes ◽  
Joseph Harari

The use of geoid models to estimate the Mean Dynamic Topography was stimulated with the launching of the GRACE satellite system, since its models present unprecedented precision and space-time resolution. In the present study, besides the DNSC08 mean sea level model, the following geoid models were used with the objective of computing the MDTs: EGM96, EIGEN-5C and EGM2008. In the method adopted, geostrophic currents for the South Atlantic were computed based on the MDTs. In this study it was found that the degree and order of the geoid models affect the determination of TDM and currents directly. The presence of noise in the MDT requires the use of efficient filtering techniques, such as the filter based on Singular Spectrum Analysis, which presents significant advantages in relation to conventional filters. Geostrophic currents resulting from geoid models were compared with the HYCOM hydrodynamic numerical model. In conclusion, results show that MDTs and respective geostrophic currents calculated with EIGEN-5C and EGM2008 models are similar to the results of the numerical model, especially regarding the main large scale features such as boundary currents and the retroflection at the Brazil-Malvinas Confluence.


Sign in / Sign up

Export Citation Format

Share Document