scholarly journals Crustal response to heavy rains in Southwest Japan 2017-2020

2022 ◽  
Vol 578 ◽  
pp. 117325
Author(s):  
Kosuke Heki ◽  
Syachrul Arief
Keyword(s):  
2019 ◽  
Vol 53 (4) ◽  
pp. 235-247
Author(s):  
Tsuyoshi Shintani ◽  
Harue Masuda ◽  
Kaori Okazaki ◽  
Emilie Even ◽  
Masahiko Ono ◽  
...  
Keyword(s):  

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Kazutoshi Imanishi ◽  
Makiko Ohtani ◽  
Takahiko Uchide

Abstract A driving stress of the Mw5.8 reverse-faulting Awaji Island earthquake (2013), southwest Japan, was investigated using focal mechanism solutions of earthquakes before and after the mainshock. The seismic records from regional high-sensitivity seismic stations were used. Further, the stress tensor inversion method was applied to infer the stress fields in the source region. The results of the stress tensor inversion and the slip tendency analysis revealed that the stress field within the source region deviates from the surrounding area, in which the stress field locally contains a reverse-faulting component with ENE–WSW compression. This local fluctuation in the stress field is key to producing reverse-faulting earthquakes. The existing knowledge on regional-scale stress (tens to hundreds of km) cannot predict the occurrence of the Awaji Island earthquake, emphasizing the importance of estimating local-scale (< tens of km) stress information. It is possible that the local-scale stress heterogeneity has been formed by local tectonic movement, i.e., the formation of flexures in combination with recurring deep aseismic slips. The coseismic Coulomb stress change, induced by the disastrous 1995 Mw6.9 Kobe earthquake, increased along the fault plane of the Awaji Island earthquake; however, the postseismic stress change was negative. We concluded that the gradual stress build-up, due to the interseismic plate locking along the Nankai trough, overcame the postseismic stress reduction in a few years, pushing the Awaji Island earthquake fault over its failure threshold in 2013. The observation that the earthquake occurred in response to the interseismic plate locking has an important implication in terms of seismotectonics in southwest Japan, facilitating further research on the causal relationship between the inland earthquake activity and the Nankai trough earthquake. Furthermore, this study highlighted that the dataset before the mainshock may not have sufficient information to reflect the stress field in the source region due to the lack of earthquakes in that region. This is because the earthquake fault is generally locked prior to the mainshock. Further research is needed for estimating the stress field in the vicinity of an earthquake fault via seismicity before the mainshock alone.


1997 ◽  
Vol 134 (4) ◽  
pp. 557-561
Author(s):  
KATSUHIRO NAKAYAMA

Miocene subtidal sandwave deposits in southwest Japan were influenced by periodic flow and steady flow. The sandwave deposits can be divided into five units, based on lithofacies and thickness. In order of accretion, unit 1 consists of unidirectional sand bedforms without mud drapes, unit 2 of unidirectional sand bedforms with thin, discontinuous mud drapes, unit 3 of bidirectional sand bedforms with thin continuous mud drapes, and units 4 and 5 of relatively thinner and smaller bidirectional sand bedforms with continuous mud drapes. The thickness of units 1 to 3 increase progressively to 2.6 m, and units 4 to 5 subsequently decrease from 2.0 to 1.0 m. Variations between the units are due to differing combinations of periodic and steady flow velocities. Palaeoflow velocity is estimated from grain size and unit thickness. Depth-mean velocities of steady flow components gradually decrease from 0.72 ms−1 to 0.16 ms−1 with unit accumulation.


1985 ◽  
Vol 38 (2) ◽  
pp. 243-249
Author(s):  
Susumu NISHIMURA ◽  
Tohru MOGI ◽  
Kazuo MIND ◽  
Osamu YAMADA

Sign in / Sign up

Export Citation Format

Share Document