sandstone provenance
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 47 (3) ◽  
pp. 75-76
Author(s):  
Herman Darman

Several major discoveries in the eastern part of Indonesia (e.g. Tangguh and Abadi) have increased more petroleum exploration interest in the area. These sizeable discoveries encountered gas in the Jurassic sandstone, which is a key reservoir target in the Northwest Shelf of Australia. The Mesozoic sandstone provenance is located in the Australian Continental Plate or also known as the Sahul Shelf. Thousands of wells were drilled in the Sahul Shelf and the stratigraphy in this area is well understood. The extension of the Mesozoic sandstone towards Indonesian territory, with much less well information, is one of the keys of success for petroleum exploration. Refinement of the stratigraphy of the eastern part of Indonesia is crucial to understand the extension.To refine the stratigraphy of Eastern Indonesia, especially for the Mesozoic interval, dinoflagellates play a significant role. Several types of this marine biota have been used by Australian stratigraphers as markers. In the case where stratigraphic tie to Northwest Shelf Australia discoveries, key wells or standard chronostratigraphy, dinoflagellate understanding is critical.Dinoflagellate markers are used to mark several subdivisions of Plover Sandstone. Norvick (2001) used W. indotata and D. caddaensis Maximum Flooding Surfaces to subdivide the reservoir target into upper, middle and lower Plover Formation. These surfaces are named after dinoflagellates. More markers were identified to mark the source rock and seal in the petroleum system. To have a detail correlation from Indonesia to the NW Shelf, understanding of dinoflagellates is crucial. 


Author(s):  
Parisa GholamiZadeh ◽  
Xiumian Hu ◽  
Eduardo Garzanti ◽  
Mohammad Hossein Adabi

The Zagros orogen, formed by the collision of the Arabian and Eurasian continental margins, represents one of the largest and richest oil and gas provinces in the world. The Zagros fold-thrust belt records collision and convergence along the Neotethys suture zone. By coupling field observations, sandstone modal analysis, U-Pb zircon dating, and Hf isotopic data from the Upper Cretaceous to Pliocene sedimentary succession of the Neyriz region, this paper documents several major provenance changes that allow us to propose a refined scenario for the Zagros orogeny. An ophiolitic complex dated by detrital-zircon U-Pb geochronology as ca. 95 Ma provided detritus to Upper Cretaceous-Paleocene strata deposited along the northeastern margin of the Arabian lower plate (ophiolite provenance). Yet, on the southwestern margin of the Eurasian upper plate, upper Paleocene-lower Eocene strata indicate provenance from Mesozoic magmatic rocks yielding zircons dated as ca. 240 Ma and 170 Ma as well as the recycling of clastic rocks. Since the early Miocene, the sedimentary basin located on the Arabian plate received both ophiolitic detritus and magmatic-arc, recycled clastic, and axial-belt metamorphic detritus from Eurasia. U-Pb ages of detrital zircons reflect polyphase magmatism at 170 Ma, 95 Ma, and 40 Ma on the Eurasian active margin. Our results indicate that progressive accretion, uplift, and exhumation of the Zagros orogen was well under way by the beginning of the Miocene in the Neyriz region. Literature data from adjacent regions suggest that the Arabia/Eurasia collision may have occurred diachronously and later in the Kermanshah and Lurestan areas to the north.


2021 ◽  
Author(s):  
Parisa GholamiZadeh ◽  
et al.

Table S1: Detrital zircon U-Th-Pb age and Th/U ratio result from Cenozoic sandstones of Zagros Orogeny.


2021 ◽  
Author(s):  
Parisa GholamiZadeh ◽  
et al.

Table S1: Detrital zircon U-Th-Pb age and Th/U ratio result from Cenozoic sandstones of Zagros Orogeny.


Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 880
Author(s):  
Wilfried Winkler ◽  
Denise Bussien ◽  
Munktsengel Baatar ◽  
Chimedtseren Anaad ◽  
Albrecht von Quadt

Our study is aimed at reconstructing the Palaeozoic–early Mesozoic plate tectonic development of the Central Asian Orogenic Belt in central and southeast Mongolia (Gobi). We use sandstone provenance signatures including laser ablation U-Pb ages of detrital zircons, their epsilon hafnium isotope signatures, and detrital framework grain analyses. We adopt a well-established terran subdivision of central and southeastern Mongolia. However, according to their affinity and tectonic assemblage we group them into three larger units consisting of continental basement, rift-passive continental margin and arc elements, respectively. These are in today’s coordinates: (i) in the north the late Cambrian collage from which the later Mongol-Okhotsk and the Central Mongolia-Erguna mountain ranges resulted, (ii) in the south a heterogeneous block from which the South Mongolia-Xin’gan and Inner Mongolia-Xilin belts developed, and (iii) in between we still distinguish the intra-oceanic volcanic arc of the Gurvansayhan terrane. We present a model for paleotectonic development for the period from Cambrian to Jurassic, which also integrates findings from the Central Asian Orogenic Belt in China and Russia. This mobilistic model implies an interplay of rift and drift processes, ocean formation, oceanic subduction, basin inversion, collision and suture formation in space and time. The final assemblage of the Central Asian Orogenic Belt occurred in Early Jurassic.


2020 ◽  
Vol 780 ◽  
pp. 228400 ◽  
Author(s):  
Chao Li ◽  
Xiumian Hu ◽  
Jiangang Wang ◽  
Pieter Vermeesch ◽  
Eduardo Garzanti

Sign in / Sign up

Export Citation Format

Share Document