Modeling of distributed generators and converters control for power flow analysis of networked islanded hybrid microgrids

2020 ◽  
Vol 184 ◽  
pp. 106343 ◽  
Author(s):  
Ernauli Aprilia ◽  
Ke Meng ◽  
H.H. Zeineldin ◽  
Mohamed Al Hosani ◽  
Zhao Yang Dong
Author(s):  
Kumar Cherukupalli ◽  
Vijaya Anand N

In this paper, the optimal distribution generation (DG) size and location for power flow analysis at the smart grid by hybrid method are proposed. The proposed hybrid method is the Interactive Autodidactic School (IAS) and the Most Valuable Player Algorithm (MVPA) and commonly named as IAS-MVPA method. The main aim of this work is to reduce line loss and total harmonic distortion (THD), similarly, to recover the voltage profile of system through the optimal location and size of the distributed generators and optimal rearrangement of network. Here, IAS-MVPA method is utilized as a rectification tool to get the maximum DG size and the maximal reconfiguration of network at environmental load variation. In case of failure, the IAS method is utilized for maximizing the DG location. The IAS chooses the line of maximal power loss as optimal location to place the DG based on the objective function. The fault violates the equality and inequality restrictions of the safe limit system. From the control parameters, the low voltage drift is improved using the MVPA method. The low-voltage deviation has been exploited for obtaining the maximum capacity of the DG. After that, the maximum capacity is used at maximum location that improves the power flow of the system. The proposed system is performed on MATLAB/Simulink platform, and the effectiveness is assessed by comparing it with various existing processes such as generic algorithm (GA), Cuttle fish algorithm (CFA), adaptive grasshopper optimization algorithm (AGOA) and artificial neural network (ANN).


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2702
Author(s):  
Xiaojun Zhao ◽  
Xiuhui Chai ◽  
Xiaoqiang Guo ◽  
Ahmad Waseem ◽  
Xiaohuan Wang ◽  
...  

Different from the extant power flow analysis methods, this paper discusses the power flows for the unified power quality conditioner (UPQC) in three-phase four-wire systems from the point of view of impedance matching. To this end, combined with the designed control strategies, the establishing method of the UPQC impedance model is presented, and on this basis, the UPQC system can be equivalent to an adjustable impedance model. After that, a concept of impedance matching is introduced into this impedance model to study the operation principle for the UPQC system, i.e., how the system changes its operation states and power flow under the grid voltage variations through discussing the matching relationships among node impedances. In this way, the nodes of the series and parallel converter are matched into two sets of impedances in opposite directions, which mean that one converter operates in rectifier state to draw the energy and the other one operates in inverter state to transmit the energy. Consequently, no matter what grid voltages change, the system node impedances are dynamically matched to ensure that output equivalent impedances are always equal to load impedances, so as to realize impedance and power balances of the UPQC system. Finally, the correctness of the impedance matching-based power flow analysis is validated by the experimental results.


Sign in / Sign up

Export Citation Format

Share Document