Insight into impact of geomagnetically induced currents on power systems: Overview, challenges and mitigation

2020 ◽  
pp. 106927
Author(s):  
Vipul N. Rajput ◽  
David H. Boteler ◽  
Nishil Rana ◽  
Mahenaj Saiyed ◽  
Smit Anjana ◽  
...  
2017 ◽  
Vol 35 (3) ◽  
pp. 751-761 ◽  
Author(s):  
Rachel L. Bailey ◽  
Thomas S. Halbedl ◽  
Ingrid Schattauer ◽  
Alexander Römer ◽  
Georg Achleitner ◽  
...  

Abstract. Geomagnetically induced currents (GICs) in power systems, which can lead to transformer damage over the short and the long term, are a result of space weather events and geomagnetic variations. For a long time, only high-latitude areas were considered to be at risk from these currents, but recent studies show that considerable GICs also appear in midlatitude and equatorial countries. In this paper, we present initial results from a GIC model using a thin-sheet approach with detailed surface and subsurface conductivity models to compute the induced geoelectric field. The results are compared to measurements of direct currents in a transformer neutral and show very good agreement for short-period variations such as geomagnetic storms. Long-period signals such as quiet-day diurnal variations are not represented accurately, and we examine the cause of this misfit. The modelling of GICs from regionally varying geoelectric fields is discussed and shown to be an important factor contributing to overall model accuracy. We demonstrate that the Austrian power grid is susceptible to large GICs in the range of tens of amperes, particularly from strong geomagnetic variations in the east–west direction.


2014 ◽  
Vol 32 (9) ◽  
pp. 1177-1187 ◽  
Author(s):  
D. H. Boteler ◽  
R. J. Pirjola

Abstract. Assessing the geomagnetic hazard to power systems requires reliable modelling of the geomagnetically induced currents (GIC) produced in the power network. This paper compares the Nodal Admittance Matrix method with the Lehtinen–Pirjola method and shows them to be mathematically equivalent. GIC calculation using the Nodal Admittance Matrix method involves three steps: (1) using the voltage sources in the lines representing the induced geoelectric field to calculate equivalent current sources and summing these to obtain the nodal current sources, (2) performing the inversion of the admittance matrix and multiplying by the nodal current sources to obtain the nodal voltages, (3) using the nodal voltages to determine the currents in the lines and in the ground connections. In the Lehtinen–Pirjola method, steps 2 and 3 of the Nodal Admittance Matrix calculation are combined into one matrix expression. This involves inversion of a more complicated matrix but yields the currents to ground directly from the nodal current sources. To calculate GIC in multiple voltage levels of a power system, it is necessary to model the connections between voltage levels, not just the transmission lines and ground connections considered in traditional GIC modelling. Where GIC flow to ground through both the high-voltage and low-voltage windings of a transformer, they share a common path through the substation grounding resistance. This has been modelled previously by including non-zero, off-diagonal elements in the earthing impedance matrix of the Lehtinen–Pirjola method. However, this situation is more easily handled in both the Nodal Admittance Matrix method and the Lehtinen–Pirjola method by introducing a node at the neutral point.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3335
Author(s):  
Soobae Kim ◽  
Injoo Jeong

High-altitude electromagnetic pulses (HEMPs) are bursts of electromagnetic energy that result from nuclear weapon detonations at altitudes at or above 30 km. A HEMP is comprised of three components: E1, E2, and E3. E1 and E2 are instantaneous emissions that can damage electronic components, whereas E3 generates low-frequency, geomagnetically-induced currents in transmission lines and power transformers. These currents can lead to the half-cycle saturation of power transformers and increased reactive power consumption. This study assessed the impact of the E3 HEMP on Korean electric power systems. For this assessment, two publicly available E3 HEMP environments were identified. A Direct Current (DC)equivalent model of Korean power systems was developed to calculate the geomagnetically-induced currents and increased the reactive power absorption of transformers in power systems. The vulnerability assessment involved two types of analysis: Static power flow analysis and dynamic transient stability analysis. The maximum electric field limit was determined by performing a steady-state analysis. The capability of the Korean electric power systems to maintain synchronism and acceptable voltages in the transient stability time frame following an E3 HEMP event was evaluated. Furthermore, the effects of detonations at five target locations were compared. It was concluded that Korean electric power systems cannot maintain their stability when affected by an E3 HEMP.


Sign in / Sign up

Export Citation Format

Share Document