Application of smart transformers in power systems including PV and storage systems under unbalanced and nonlinear load and fault condition

2021 ◽  
Vol 201 ◽  
pp. 107535
Author(s):  
Arash Zahernia ◽  
Hesam Rahbarimagham
Author(s):  
Sergio Cantillo ◽  
Ricardo Moreno

The power system operation considering energy storage systems (ESS) and renewable power represents a challenge. In a 24-hour economic dispatch, the generation resources are dispatched to meet demand requirements considering network restrictions. The uncertainty and unpredictability associated with renewable resources and storage systems represents challenges for power system operation due to operational and economical restrictions. This paper develops a detailed formulation to model energy storage systems (ESS) and renewable sources for power system operation considering 24-hour period. The model is formulated and evaluated with two different power systems (i.e. 5-bus and IEEE modified 24-bus systems). Wind availability patterns and scenarios are used to assess the ESS performance under different operational circumstances. With regard to the systems proposed, there are scenarios in order to evaluate ESS performance. In one of them, the increase in capacity did not represent significant savings or performance for the system, while in the other it was quite the opposite especially during peak load periods.


2020 ◽  
pp. 102-109
Author(s):  
D.KH. DOMULLODZHANOV ◽  
◽  
R. RAHMATILLOEV

The article presents the results of the field studies and observations that carried out on the territory of the hilly, low-mountain and foothill agro landscapes of the Kyzylsu-yuzhnaya (Kyzylsu-Southern) River Basin of Tajikistan. Taking into account the high-altitude location of households and the amount of precipitation in the river basin, the annual volumes of water accumulated with the use of low-cost systems of collection and storage of precipitation have been clarified. The amount of water accumulated in the precipitation collection and storage systems has been established, the volume of water used for communal and domestic needs,the watering of livestock and the amount of water that can be used to irrigate crops in the have been determined. Possible areas of irrigation of household plots depending on the different availability of precipitation have been determined. It has been established that in wet years (with precipitation of about 10%) the amount of water collected using drip irrigation will be sufficient for irrigation of 0.13 hectares, and in dry years (with 90% of precipitation) it will be possible to irrigate only 0.03 ha of the household plot. On the basis of the basin, the total area of irrigation in wet years can be 4497 ha, and in dry years only 1087 ha. Taking into account the forecasts of population growth by 2030 and an increase in the number of households, the total area of irrigation of farmlands in wet years may reach 5703 hectares,and in dry years – 1379 hectares. Growing crops on household plots under irrigation contributes to a significant increase in land productivity and increases the efficiency of water use of the Kyzylsu-yuzhnaya basin.


Author(s):  
Nayab Sheikh ◽  
Muhammad Bilal Tahir ◽  
Nisar Fatima ◽  
Muhammad Sagir ◽  
Muhammad Pervaiz ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1379
Author(s):  
Md Ruhul Amin ◽  
Michael Negnevitsky ◽  
Evan Franklin ◽  
Kazi Saiful Alam ◽  
Seyed Behzad Naderi

In power systems, high renewable energy penetration generally results in conventional synchronous generators being displaced. Hence, the power system inertia reduces, thus causing a larger frequency deviation when an imbalance between load and generation occurs, and thus potential system instability. The problem associated with this increase in the system’s dynamic response can be addressed by various means, for example, flywheels, supercapacitors, and battery energy storage systems (BESSs). This paper investigates the application of BESSs for primary frequency control in power systems with very high penetration of renewable energy, and consequently, low levels of synchronous generation. By re-creating a major Australian power system separation event and then subsequently simulating the event under low inertia conditions but with BESSs providing frequency support, it has been demonstrated that a droop-controlled BESS can greatly improve frequency response, producing both faster reaction and smaller frequency deviation. Furthermore, it is shown via detailed investigation how factors such as available battery capacity and droop coefficient impact the system frequency response characteristics, providing guidance on how best to mitigate the impact of future synchronous generator retirements. It is intended that this analysis could be beneficial in determining the optimal BESS capacity and droop value to manage the potential frequency stability risks for a future power system with high renewable energy penetrations.


Sign in / Sign up

Export Citation Format

Share Document