scholarly journals Power system operation considering detailed modelling of energy storage systems

Author(s):  
Sergio Cantillo ◽  
Ricardo Moreno

The power system operation considering energy storage systems (ESS) and renewable power represents a challenge. In a 24-hour economic dispatch, the generation resources are dispatched to meet demand requirements considering network restrictions. The uncertainty and unpredictability associated with renewable resources and storage systems represents challenges for power system operation due to operational and economical restrictions. This paper develops a detailed formulation to model energy storage systems (ESS) and renewable sources for power system operation considering 24-hour period. The model is formulated and evaluated with two different power systems (i.e. 5-bus and IEEE modified 24-bus systems). Wind availability patterns and scenarios are used to assess the ESS performance under different operational circumstances. With regard to the systems proposed, there are scenarios in order to evaluate ESS performance. In one of them, the increase in capacity did not represent significant savings or performance for the system, while in the other it was quite the opposite especially during peak load periods.

2021 ◽  
Author(s):  
Lucas Barros Scianni Morais ◽  
Vinicius Costa ◽  
Paulla Freire ◽  
Natália Vilas Boas Pappi Maciel ◽  
Patricia Silva ◽  
...  

2018 ◽  
Vol 58 ◽  
pp. 01012 ◽  
Author(s):  
Dmitry Krupenev

The paper deals with the problem of the accounting of renewable energy sources and energy storage systems in assessment of power system adequacy. Development of renewable energy sources and energy storage systems in the present day power systems is one of the main focuses. In power systems of some countries the share of electric energy generated by renewable energy sources is above 50 % in the energy balance. Therefore, the plans on development of the present day power systems must be elaborated with the proper accounting of operation of renewable energy sources and energy storage systems and the sound capacity reserves in terms of these facilities. The paper presents the algorithms for the accounting of renewable energy sources and energy storage systems. The experimental studies performed illustrate feasibility of the suggested algorithms.


2020 ◽  
Vol 12 (2) ◽  
pp. 576 ◽  
Author(s):  
Karar Mahmoud ◽  
Mohamed Abdel-Nasser ◽  
Eman Mustafa ◽  
Ziad M. Ali

Worldwide, the penetrations of photovoltaic (PV) and energy storage systems are increased in power systems. Due to the intermittent nature of PVs, these sustainable power systems require efficient managing and prediction techniques to ensure economic and secure operations. In this paper, a comprehensive dynamic economic dispatch (DED) framework is proposed that includes fuel-based generators, PV, and energy storage devices in sustainable power systems, considering various profiles of PV (clear and cloudy). The DED model aims at minimizing the total fuel cost of power generation stations while considering various constraints of generation stations, the power system, PV, and energy storage systems. An improved optimization algorithm is proposed to solve the DED optimization problem for a sustainable power system. In particular, a mutation mechanism is combined with a salp–swarm algorithm (SSA) to enhance the exploitation of the search space so that it provides a better population to get the optimal global solution. In addition, we propose a DED handling strategy that involves the use of PV power and load forecasting models based on deep learning techniques. The improved SSA algorithm is validated by ten benchmark problems and applied to the DED optimization problem for a hybrid power system that includes 40 thermal generators and PV and energy storage systems. The experimental results demonstrate the efficiency of the proposed framework with different penetrations of PV.


Sign in / Sign up

Export Citation Format

Share Document