A robust game-theoretic optimization model for battery energy storage in multi-microgrids by considering of renewable based DGs uncertainty

2022 ◽  
Vol 204 ◽  
pp. 107591
Author(s):  
Majid Aryanezhad
2020 ◽  
Vol 12 (3) ◽  
pp. 985 ◽  
Author(s):  
Jicheng Liu ◽  
Qiongjie Dai

Recently, an increasing number of photovoltaic/battery energy storage/electric vehicle charging stations (PBES) have been established in many cities around the world. This paper proposes a PBES portfolio optimization model with a sustainability perspective. First, various decision-making criteria are identified from perspectives of economy, society, and environment. Secondly, the performance of alternatives with respect to each criterion is evaluated in the form of trapezoidal intuitionistic fuzzy numbers (TrIFN). Thirdly, the alternatives are ranked based on cumulative prospect theory. Then, a multi-objective optimization model is built and solved by multi-objective particle swarm optimization (MOPSO) algorithm to determine the optimal PBES portfolio. Finally, a case in South China is studied and a scenario analysis is conducted to verify the effectiveness of the proposed model.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5690
Author(s):  
Pushpendra Singh ◽  
Nand Kishor Meena ◽  
Jin Yang ◽  
Shree Krishna Bishnoi ◽  
Eduardo Vega-Fuentes ◽  
...  

This article presents a two-stage optimization model aiming to determine optimal energy mix in distribution networks, i.e., battery energy storage, fuel cell, and wind turbines. It aims to alleviate the impact of high renewable penetration on the systems. To solve the proposed complex optimization model, a standard variant of the dragonfly algorithm (DA) has been improved and then applied to find the optimal mix of distributed energy resources. The suggested improvements are validated before their application. A heuristic approach has also been introduced to solve the second stage problem that determines the optimal power dispatch of battery energy storage as per the size suggested by the first stage. The proposed framework was implemented on a benchmark 33-bus and a practical Indian 108-bus distribution network over different test cases. The proposed model for energy mix and modified DA technique has significantly enhanced the operational performance of the network in terms of average annual energy loss reduction, node voltage profiles, and demand fluctuation caused by renewables.


2016 ◽  
Vol 136 (11) ◽  
pp. 824-832 ◽  
Author(s):  
Mami Mizutani ◽  
Takenori Kobayashi ◽  
Katsunori Watabe ◽  
Tomoki Wada

Sign in / Sign up

Export Citation Format

Share Document