Hybrid energy storage approach for renewable energy applications

2016 ◽  
Vol 8 ◽  
pp. 311-319 ◽  
Author(s):  
Thilo Bocklisch
2022 ◽  
pp. 779-804
Author(s):  
Muhammad Asif Rabbani

It is very important that the installed renewable energy system should produce the maximum power outputs with minimum costs, and that can only be achieved with the selection of the best optimization technique applied for the best control strategies along with the introduction of the hybrid energy storage systems (HESS). This chapter presents some optimization techniques applied in control strategies for hybrid energy storage systems in distributed renewable energy systems. The integration of energy production and consumption component through the smart grid concept enables increased demand response and energy efficiency. Hybrid energy storage systems and their applications in the renewable energy systems are extensively discussed besides control strategies involved. The storages systems will play an important role in future related to smart grid.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3268
Author(s):  
Mehdi Dhifli ◽  
Abderezak Lashab ◽  
Josep M. Guerrero ◽  
Abdullah Abusorrah ◽  
Yusuf A. Al-Turki ◽  
...  

This paper proposes an enhanced energy management system (EEMS) for a residential AC microgrid. The renewable energy-based AC microgrid with hybrid energy storage is broken down into three distinct parts: a photovoltaic (PV) array as a green energy source, a battery (BT) and a supercapacitor (SC) as a hybrid energy storage system (HESS), and apartments and electric vehicles, given that the system is for residential areas. The developed EEMS ensures the optimal use of the PV arrays’ production, aiming to decrease electricity bills while reducing fast power changes in the battery, which increases the reliability of the system, since the battery undergoes fewer charging/discharging cycles. The proposed EEMS is a hybrid control strategy, which is composed of two stages: a state machine (SM) control to ensure the optimal operation of the battery, and an operating mode (OM) for the best operation of the SC. The obtained results show that the EEMS successfully involves SC during fast load and PV generation changes by decreasing the number of BT charging/discharging cycles, which significantly increases the system’s life span. Moreover, power loss is decreased during passing clouds phases by decreasing the power error between the extracted power by the sources and the required equivalent; the improvement in efficiency reaches 9.5%.


2019 ◽  
Vol 11 (22) ◽  
pp. 6293 ◽  
Author(s):  
Seunghyun Park ◽  
Surender Reddy Salkuti

The proposed optimal energy management system balances the energy flows among the energy consumption by accelerating trains, energy production from decelerating trains, energy from wind and solar photovoltaic (PV) energy systems, energy storage systems, and the energy exchange with a traditional electrical grid. In this paper, an AC optimal power flow (AC-OPF) problem is formulated by optimizing the total cost of operation of a railroad electrical system. The railroad system considered in this paper is composed of renewable energy resources such as wind and solar PV systems, regenerative braking capabilities, and hybrid energy storage systems. The hybrid energy storage systems include storage batteries and supercapacitors. The uncertainties associated with wind and solar PV powers are handled using probability distribution functions. The proposed optimization problem is solved using the differential evolution algorithm (DEA). The simulation results show the suitability and effectiveness of proposed approach.


2019 ◽  
Vol 15 (1) ◽  
pp. 46-54 ◽  
Author(s):  
Tiezhou Wu ◽  
Fanchao Ye ◽  
Yuehong Su ◽  
Yubo Wang ◽  
Saffa Riffat

Abstract As the fossil energy crisis and environmental pollution become more and more serious, clean renewable energy becomes the inevitable choice of energy structure adjustment. The power system planning and operation has been greatly influenced by the instability of the power output of distributed renewable energy systems such as solar energy and wind energy. The hybrid energy storage system composed of accumulator and supercapacitor can solve the above problems. Based on the analysis of the energy storage requirements for the stable operation of the DC microgrid, battery–supercapacitor cascade approach is adopted to form hybrid energy storage system, in a single hybrid energy storage subsystem for battery and supercapacitor and in the microgrid system of different hybrid energy storage subsystem, respectively, and puts forward the corresponding power allocation method to realize the smooth control of the battery current, to reduce the battery charge and discharge times, to prolong the service life of battery and to improve the running stability of the microgrid.


2021 ◽  
Vol 16 ◽  
pp. 41-51
Author(s):  
T. A. Boghdady ◽  
S. N. Alajmi ◽  
W. M. K. Darwish ◽  
M. A. Mostafa Hassan ◽  
A. Monem Seif

Renewable energy resources are a favorable solution for the coming energy. So, a great interest has been paid in the last decades for developing and utilizing renewable energy resources as wind energy. As it has a large energy contents and, particularize with the availability, but the major problems of it are represented in unmatched with load demand because the intermittency and fluctuation of nature conditions. Many studies focused on the new strategy of using Battery Storage System (BSS), and solving some problems that affect the DC bus voltage and the BSS by using Electrochemical Double Layer Capacitor (EDLC). Their capability is to store energy to realize the objective of time shifting of surplus energy with a high efficiency. The article main objective is to model, simulate, design, and study the performance of a Stand-Alone Wind Energy System with Hybrid Energy Storage (SAWS-HES). Thus, a complete model of the proposed system is implemented including a detailed modeling procedure of the HESS components. In addition to the main contribution, a study of the performance of EDLC only as a storage device that has fast response device integrated to the suggested system then it hybridized with the BSS. The HESS has the capability to compensate the DC bus voltage in the transient conditions and gives good stability for the system. The SAWS-HES utilizes one main renewable energy resource as wind turbine and overall model is employed under MATLAB/Simulink including a developed simple logic controller. The SAWS-HES simulation results presented a promising performance and have a satisfied performance in meeting the end load demands at different operation conditions. This ensures the SAWS-HES reliability and the effectiveness with HES and the controller in stand-alone operation formulating an excellent solution for the renewable energy systems


Sign in / Sign up

Export Citation Format

Share Document