A systematic review for performance augmentation of solar still with heat storage materials: A state of art

2021 ◽  
pp. 103578
Author(s):  
Vikash Kumar Chauhan ◽  
Shailendra Kumar Shukla ◽  
Pushpendra Kumar Singh Rathore
2014 ◽  
Vol 592-594 ◽  
pp. 2374-2378
Author(s):  
A. Senthil Rajan ◽  
K. Raja

A single basin single slope solar still with 0.82mx 0.81m x 0.75m has been fabricated with G.I sheet and tested with different water depths of 2,3,4cm. Various solid and liquid sensible heat storage materials, Evaporative surface materials are used in the form of billets, in the still. To reduce glass cover temperature the outer glass was cooled by using sprinkler manually at regular interval of time. Theoretical analysis was performed and compared with experimental values. The performances of modified still were compared with conventional still of same size running under the same meteorological conditions. The solid sensible heat storage materials produces48% more productivity than conventional still. Liquid sensible heat storage material produces 19% more than conventional in till. The payback period of the still was 340 days.


Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 241
Author(s):  
Raul-Augustin Mitran ◽  
Simona Ioniţǎ ◽  
Daniel Lincu ◽  
Daniela Berger ◽  
Cristian Matei

Phase change materials (PCMs) can store thermal energy as latent heat through phase transitions. PCMs using the solid-liquid phase transition offer high 100–300 J g−1 enthalpy at constant temperature. However, pure compounds suffer from leakage, incongruent melting and crystallization, phase separation, and supercooling, which limit their heat storage capacity and reliability during multiple heating-cooling cycles. An appropriate approach to mitigating these drawbacks is the construction of composites as shape-stabilized phase change materials which retain their macroscopic solid shape even at temperatures above the melting point of the active heat storage compound. Shape-stabilized materials can be obtained by PCMs impregnation into porous matrices. Porous silica nanomaterials are promising matrices due to their high porosity and adsorption capacity, chemical and thermal stability and possibility of changing their structure through chemical synthesis. This review offers a first in-depth look at the various methods for obtaining composite PCMs using porous silica nanomaterials, their properties, and applications. The synthesis and properties of porous silica composites are presented based on the main classes of compounds which can act as heat storage materials (paraffins, fatty acids, polymers, small organic molecules, hydrated salts, molten salts and metals). The physico-chemical phenomena arising from the nanoconfinement of phase change materials into the silica pores are discussed from both theoretical and practical standpoints. The lessons learned so far in designing efficient composite PCMs using porous silica matrices are presented, as well as the future perspectives on improving the heat storage materials.


Sign in / Sign up

Export Citation Format

Share Document