Event-triggered decentralized coordinated control method for economic operation of an islanded electric-hydrogen hybrid DC microgrid

2022 ◽  
Vol 45 ◽  
pp. 103704
Author(s):  
Luoyi Li ◽  
Ying Han ◽  
Qi Li ◽  
Yuchen Pu ◽  
Cai Sun ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 404
Author(s):  
Sara J. Ríos ◽  
Daniel J. Pagano ◽  
Kevin E. Lucas

Currently, high-performance power conversion requirements are of increasing interest in microgrid applications. In fact, isolated bidirectional dc-dc converters are widely used in modern dc distribution systems. The dual active bridge (DAB) dc-dc converter is identified as one of the most promising converter topology for the mentioned applications, due to its benefits of high power density, electrical isolation, bidirectional power flow, zero-voltage switching, and symmetrical structure. This study presents a power management control scheme in order to ensure the power balance of a dc microgrid in stand-alone operation, where the renewable energy source (RES) and the battery energy storage (BES) unit are interfaced by DAB converters. The power management algorithm, as introduced in this work, selects the proper operation of the RES system and BES system, based on load/generation power and state-of-charge of the battery conditions. Moreover, a nonlinear robust control strategy is proposed when the DAB converters are in voltage-mode-control in order to enhance the dynamic performance and robustness of the common dc-bus voltage, in addition to overcoming the instability problems that are caused by constant power loads and the dynamic interactions of power electronic converters. The simulation platform is developed in MATLAB/Simulink, where a photovoltaic system and battery system are selected as the typical RES and BES, respectively. Assessments on the performance of the proposed control scheme are conducted. Comparisons with the other control method are also provided.


2013 ◽  
Vol 860-863 ◽  
pp. 1073-1077 ◽  
Author(s):  
Zhi Guo Kong ◽  
Hong Wei Zhang ◽  
Zi Ning Tang

In order to improve the performance of a new type of full hybrid electric bus, this paper puts forward a set of coordinated control method to adjust the operation of the engine and two motors. In the engine start-stop logic control, comprehensive consideration of SOC, the speed of the bus and the accelerator pedal stroke are performed, while hysteresis control is introduced to improve the stability of the control; In the engine working point adjusting control, not only the engine speed command rate of change was optimized, but also the output torque rate was optimized to match the air injection and exhaust, etc. Further, the method based on dynamic constraints was used to optimize the working point adjustment process. At present, there are hundreds of busses operates in route. Results verify the feasibility and effectiveness of the control method. The vehicle has good fuel economy, and the dynamic performance and driving comfort are also greatly improved.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2699
Author(s):  
Miguel Montilla-DJesus ◽  
Édinson Franco-Mejía ◽  
Edwin Rivas Trujillo ◽  
José Luis Rodriguez-Amenedo ◽  
Santiago Arnaltes

Direct current microgrids (DCMGs) are currently presented as an alternative solution for small systems that feed sensitive electrical loads into DC. According to the scientific literature, DCMG maintains good voltage regulation. However, when the system is in islanded mode, very pronounced voltage variations are presented, compromising the system’s ability to achieve reliable and stable energy management. Therefore, the authors propose a solution, connecting the electrical network through a grid-tied voltage source converter (GVSC) in order to reduce voltage variations. A coordinated control strategy between the DCMG and GVSC is proposed to regulate the DC voltage and find a stable power flow between the various active elements, which feed the load. The results show that the control strategy between the GVSC and DCMG, when tested under different disturbances, improves the performance of the system, making it more reliable and stable. Furthermore, the GVSC supports the AC voltage at the point of common coupling (PCC) without reducing the operating capacity of the DCMG and without exceeding even its most restrictive limit. All simulations were carried out in MATLAB 2020.


2021 ◽  
Author(s):  
Sicheng Gong

This paper proposes a novel event-triggered attack detection mechanism for converter-based DC microgrid system. Under a distributive network framework, each node collects its neighbours' relative data to regulate its own output for local stabilization. Without power line current data, hardly can an agent directly identify the source of unexpected power flow, especially under an organized attack composed of voltage variations and corresponding deceptive messages. In order to recognize traitors who broadcast wrong data, target at system distortion and even splitting, an efficient attack detection and identification strategy is mandatory. After the attack detector is triggered, each relative agent refuses to trust any received data directly before authentication. Through proposed two-step verification by comparing theoretical estimated signals with received ones, both self sensors and neighbour nodes would be inspected, and the attacker was difficult to hide himself. Through simulation on SIMULINK/PLECS and hardware experiments on dSpace Platform, the effectiveness of proposed detection algorithm has been proved.


Author(s):  
Xialin Li ◽  
Li Guo ◽  
Zhen Guo ◽  
Chengshan Wang ◽  
Chao Hong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document