Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes

2011 ◽  
Vol 38 (5) ◽  
pp. 5197-5204 ◽  
Author(s):  
Mingyuan Zhao ◽  
Chong Fu ◽  
Luping Ji ◽  
Ke Tang ◽  
Mingtian Zhou
2004 ◽  
Vol 13 (04) ◽  
pp. 791-800 ◽  
Author(s):  
HOLGER FRÖHLICH ◽  
OLIVIER CHAPELLE ◽  
BERNHARD SCHÖLKOPF

The problem of feature selection is a difficult combinatorial task in Machine Learning and of high practical relevance, e.g. in bioinformatics. Genetic Algorithms (GAs) offer a natural way to solve this problem. In this paper we present a special Genetic Algorithm, which especially takes into account the existing bounds on the generalization error for Support Vector Machines (SVMs). This new approach is compared to the traditional method of performing cross-validation and to other existing algorithms for feature selection.


Author(s):  
Wida Prima Mustika

Energy consumption is a demand for the amount of energy that must supply the building at any given time. Building energy consumption has continued increased over the last few decades all over the world, and Heating, Ventilating, and Air-Conditioning (HVAC), which has a catalytic role in regulating the temperature in the room, mostly accounted for of building energy use. Models created for in this study support vector machine and support vector machine-based models of genetic algorithm to obtain the value of accuracy or error rate or the smallest error value Root Mean Square Error (RMSE) in predicting energy consumption in buildings is more accurate. After testing the two models of support vector machines and support vector machines based on the genetic algorithm is the testing results obtained by using support vector machines where RMSE value obtained was 2,613. Next was the application of genetic algorithms to the optimization parameters C and γ values obtained RMSE error of 1.825 and a genetic algorithm for feature selection error RMSE values obtained for 1,767 of the 7 predictor variables and the selection attribute or feature resulting in the election of three attributes used. After that is done the optimization parameters and the importance of the value of feature selection mistake or error of the smallest RMSE of 1.537. Thus the support vector machine algorithm based on genetic algorithm can give a solution to the problems in the prediction of energy consumption rated the smallest mistake or error.


Author(s):  
Hedieh Sajedi ◽  
Mehran Bahador

In this paper, a new approach for segmentation and recognition of Persian handwritten numbers is presented. This method utilizes the framing feature technique in combination with outer profile feature that we named this the adapted framing feature. In our proposed approach, segmentation of the numbers into digits has been carried out automatically. In the classification stage of the proposed method, Support Vector Machines (SVM) and k-Nearest Neighbors (k-NN) are used. Experimentations are conducted on the IFHCDB database consisting 17,740 numeral images and HODA database consisting 102,352 numeral images. In isolated digit level on IFHCDB, the recognition rate of 99.27%, is achieved by using SVM with polynomial kernel. Furthermore, in isolated digit level on HODA, the recognition rate of 99.07% is achieved by using SVM with polynomial kernel. The experiments illustrate that applying our proposed method resulted higher accuracy compared to previous researches.


Sign in / Sign up

Export Citation Format

Share Document