Harmony-search algorithm for 2D nearest neighbor quantum circuits realization

2016 ◽  
Vol 61 ◽  
pp. 16-27 ◽  
Author(s):  
Mohammad Gh. Alfailakawi ◽  
Imtiaz Ahmad ◽  
Suha Hamdan
Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2287
Author(s):  
Ruba Obiedat ◽  
Laila Al-Qaisi ◽  
Raneem Qaddoura ◽  
Osama Harfoushi ◽  
Ala’ M. Al-Zoubi

Due to the accelerated growth of symmetrical sentiment data across different platforms, experimenting with different sentiment analysis (SA) techniques allows for better decision-making and strategic planning for different sectors. Specifically, the emergence of COVID-19 has enriched the data of people’s opinions and feelings about medical products. In this paper, we analyze people’s sentiments about the products of a well-known e-commerce website named Alibaba.com. People’s sentiments are experimented with using a novel evolutionary approach by applying advanced pre-trained word embedding for word presentations and combining them with an evolutionary feature selection mechanism to classify these opinions into different levels of ratings. The proposed approach is based on harmony search algorithm and different classification techniques including random forest, k-nearest neighbor, AdaBoost, bagging, SVM, and REPtree to achieve competitive results with the least possible features. The experiments are conducted on five different datasets including medical gloves, hand sanitizer, medical oxygen, face masks, and a combination of all these datasets. The results show that the harmony search algorithm successfully reduced the number of features by 94.25%, 89.5%, 89.25%, 92.5%, and 84.25% for the medical glove, hand sanitizer, medical oxygen, face masks, and whole datasets, respectively, while keeping a competitive performance in terms of accuracy and root mean square error (RMSE) for the classification techniques and decreasing the computational time required for classification.


2013 ◽  
Vol 32 (9) ◽  
pp. 2412-2417
Author(s):  
Yue-hong LI ◽  
Pin WAN ◽  
Yong-hua WANG ◽  
Jian YANG ◽  
Qin DENG

2016 ◽  
Vol 25 (4) ◽  
pp. 473-513 ◽  
Author(s):  
Salima Ouadfel ◽  
Abdelmalik Taleb-Ahmed

AbstractThresholding is the easiest method for image segmentation. Bi-level thresholding is used to create binary images, while multilevel thresholding determines multiple thresholds, which divide the pixels into multiple regions. Most of the bi-level thresholding methods are easily extendable to multilevel thresholding. However, the computational time will increase with the increase in the number of thresholds. To solve this problem, many researchers have used different bio-inspired metaheuristics to handle the multilevel thresholding problem. In this paper, optimal thresholds for multilevel thresholding in an image are selected by maximizing three criteria: Between-class variance, Kapur and Tsallis entropy using harmony search (HS) algorithm. The HS algorithm is an evolutionary algorithm inspired from the individual improvisation process of the musicians in order to get a better harmony in jazz music. The proposed algorithm has been tested on a standard set of images from the Berkeley Segmentation Dataset. The results are then compared with that of genetic algorithm (GA), particle swarm optimization (PSO), bacterial foraging optimization (BFO), and artificial bee colony algorithm (ABC). Results have been analyzed both qualitatively and quantitatively using the fitness value and the two popular performance measures: SSIM and FSIM indices. Experimental results have validated the efficiency of the HS algorithm and its robustness against GA, PSO, and BFO algorithms. Comparison with the well-known metaheuristic ABC algorithm indicates the equal performance for all images when the number of thresholds M is equal to two, three, four, and five. Furthermore, ABC has shown to be the most stable when the dimension of the problem is too high.


Sign in / Sign up

Export Citation Format

Share Document