scholarly journals An Intelligent Hybrid Sentiment Analyzer for Personal Protective Medical Equipments Based on Word Embedding Technique: The COVID-19 Era

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2287
Author(s):  
Ruba Obiedat ◽  
Laila Al-Qaisi ◽  
Raneem Qaddoura ◽  
Osama Harfoushi ◽  
Ala’ M. Al-Zoubi

Due to the accelerated growth of symmetrical sentiment data across different platforms, experimenting with different sentiment analysis (SA) techniques allows for better decision-making and strategic planning for different sectors. Specifically, the emergence of COVID-19 has enriched the data of people’s opinions and feelings about medical products. In this paper, we analyze people’s sentiments about the products of a well-known e-commerce website named Alibaba.com. People’s sentiments are experimented with using a novel evolutionary approach by applying advanced pre-trained word embedding for word presentations and combining them with an evolutionary feature selection mechanism to classify these opinions into different levels of ratings. The proposed approach is based on harmony search algorithm and different classification techniques including random forest, k-nearest neighbor, AdaBoost, bagging, SVM, and REPtree to achieve competitive results with the least possible features. The experiments are conducted on five different datasets including medical gloves, hand sanitizer, medical oxygen, face masks, and a combination of all these datasets. The results show that the harmony search algorithm successfully reduced the number of features by 94.25%, 89.5%, 89.25%, 92.5%, and 84.25% for the medical glove, hand sanitizer, medical oxygen, face masks, and whole datasets, respectively, while keeping a competitive performance in terms of accuracy and root mean square error (RMSE) for the classification techniques and decreasing the computational time required for classification.

2016 ◽  
Vol 25 (4) ◽  
pp. 473-513 ◽  
Author(s):  
Salima Ouadfel ◽  
Abdelmalik Taleb-Ahmed

AbstractThresholding is the easiest method for image segmentation. Bi-level thresholding is used to create binary images, while multilevel thresholding determines multiple thresholds, which divide the pixels into multiple regions. Most of the bi-level thresholding methods are easily extendable to multilevel thresholding. However, the computational time will increase with the increase in the number of thresholds. To solve this problem, many researchers have used different bio-inspired metaheuristics to handle the multilevel thresholding problem. In this paper, optimal thresholds for multilevel thresholding in an image are selected by maximizing three criteria: Between-class variance, Kapur and Tsallis entropy using harmony search (HS) algorithm. The HS algorithm is an evolutionary algorithm inspired from the individual improvisation process of the musicians in order to get a better harmony in jazz music. The proposed algorithm has been tested on a standard set of images from the Berkeley Segmentation Dataset. The results are then compared with that of genetic algorithm (GA), particle swarm optimization (PSO), bacterial foraging optimization (BFO), and artificial bee colony algorithm (ABC). Results have been analyzed both qualitatively and quantitatively using the fitness value and the two popular performance measures: SSIM and FSIM indices. Experimental results have validated the efficiency of the HS algorithm and its robustness against GA, PSO, and BFO algorithms. Comparison with the well-known metaheuristic ABC algorithm indicates the equal performance for all images when the number of thresholds M is equal to two, three, four, and five. Furthermore, ABC has shown to be the most stable when the dimension of the problem is too high.


Author(s):  
Mimoun Younes ◽  
Fouad Khodja ◽  
Riad Lakhdar Kherfene

Environmental legislation, with its increasing pressure on the energy sector to control greenhouse gases, is a driving force to reduce CO2 emissions, forced the power system operators to consider the emission problem as a consequential matter beside the economic problems, so the economic power dispatch problem has become a multi-objective optimization problem. This paper sets up an new hybrid algorithm combined in two algorithm, the harmony search algorithm and ant colony optimization (HSA-ACO), to solve the optimization with combined economic emission dispatch. This problem has been formulated as a multi-objective problem by considering both economy and emission simultaneously. The feasibility of the proposed approach was tested on 3-unit and 6-unit systems. The simulation results show that the proposed algorithm gives comparatively better operational fuel cost and emission in less computational time compared to other optimization techniques.


2018 ◽  
pp. 1-30 ◽  
Author(s):  
Alireza Askarzadeh ◽  
Esmat Rashedi

Harmony search (HS) is a meta-heuristic search algorithm which tries to mimic the improvisation process of musicians in finding a pleasing harmony. In recent years, due to some advantages, HS has received a significant attention. HS is easy to implement, converges quickly to the optimal solution and finds a good enough solution in a reasonable amount of computational time. The merits of HS algorithm have led to its application to optimization problems of different engineering areas. In this chapter, the concepts and performance of HS algorithm are shown and some engineering applications are reviewed. It is observed that HS has shown promising performance in solving difficult optimization problems and different versions of this algorithm have been developed. In the next years, it is expected that HS is applied to more real optimization problems.


Author(s):  
Alireza Askarzadeh ◽  
Esmat Rashedi

Harmony search (HS) is a meta-heuristic search algorithm which tries to mimic the improvisation process of musicians in finding a pleasing harmony. In recent years, due to some advantages, HS has received a significant attention. HS is easy to implement, converges quickly to the optimal solution and finds a good enough solution in a reasonable amount of computational time. The merits of HS algorithm have led to its application to optimization problems of different engineering areas. In this chapter, the concepts and performance of HS algorithm are shown and some engineering applications are reviewed. It is observed that HS has shown promising performance in solving difficult optimization problems and different versions of this algorithm have been developed. In the next years, it is expected that HS is applied to more real optimization problems.


2013 ◽  
Vol 32 (9) ◽  
pp. 2412-2417
Author(s):  
Yue-hong LI ◽  
Pin WAN ◽  
Yong-hua WANG ◽  
Jian YANG ◽  
Qin DENG

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jing Tian ◽  
Jianping Zhao ◽  
Chunhou Zheng

Abstract Background In recent years, various sequencing techniques have been used to collect biomedical omics datasets. It is usually possible to obtain multiple types of omics data from a single patient sample. Clustering of omics data plays an indispensable role in biological and medical research, and it is helpful to reveal data structures from multiple collections. Nevertheless, clustering of omics data consists of many challenges. The primary challenges in omics data analysis come from high dimension of data and small size of sample. Therefore, it is difficult to find a suitable integration method for structural analysis of multiple datasets. Results In this paper, a multi-view clustering based on Stiefel manifold method (MCSM) is proposed. The MCSM method comprises three core steps. Firstly, we established a binary optimization model for the simultaneous clustering problem. Secondly, we solved the optimization problem by linear search algorithm based on Stiefel manifold. Finally, we integrated the clustering results obtained from three omics by using k-nearest neighbor method. We applied this approach to four cancer datasets on TCGA. The result shows that our method is superior to several state-of-art methods, which depends on the hypothesis that the underlying omics cluster class is the same. Conclusion Particularly, our approach has better performance than compared approaches when the underlying clusters are inconsistent. For patients with different subtypes, both consistent and differential clusters can be identified at the same time.


Sign in / Sign up

Export Citation Format

Share Document