Performance Study of Harmony Search Algorithm for Multilevel Thresholding

2016 ◽  
Vol 25 (4) ◽  
pp. 473-513 ◽  
Author(s):  
Salima Ouadfel ◽  
Abdelmalik Taleb-Ahmed

AbstractThresholding is the easiest method for image segmentation. Bi-level thresholding is used to create binary images, while multilevel thresholding determines multiple thresholds, which divide the pixels into multiple regions. Most of the bi-level thresholding methods are easily extendable to multilevel thresholding. However, the computational time will increase with the increase in the number of thresholds. To solve this problem, many researchers have used different bio-inspired metaheuristics to handle the multilevel thresholding problem. In this paper, optimal thresholds for multilevel thresholding in an image are selected by maximizing three criteria: Between-class variance, Kapur and Tsallis entropy using harmony search (HS) algorithm. The HS algorithm is an evolutionary algorithm inspired from the individual improvisation process of the musicians in order to get a better harmony in jazz music. The proposed algorithm has been tested on a standard set of images from the Berkeley Segmentation Dataset. The results are then compared with that of genetic algorithm (GA), particle swarm optimization (PSO), bacterial foraging optimization (BFO), and artificial bee colony algorithm (ABC). Results have been analyzed both qualitatively and quantitatively using the fitness value and the two popular performance measures: SSIM and FSIM indices. Experimental results have validated the efficiency of the HS algorithm and its robustness against GA, PSO, and BFO algorithms. Comparison with the well-known metaheuristic ABC algorithm indicates the equal performance for all images when the number of thresholds M is equal to two, three, four, and five. Furthermore, ABC has shown to be the most stable when the dimension of the problem is too high.

Author(s):  
Erwin Erwin ◽  
Saparudin Saparudin ◽  
Wulandari Saputri

This paper proposes a new method for image segmentation is hybrid multilevel thresholding and improved harmony search algorithm. Improved harmony search algorithm which is a method for finding vector solutions by increasing its accuracy. The proposed method looks for a random candidate solution, then its quality is evaluated through the Otsu objective function. Furthermore, the operator continues to evolve the solution candidate circuit until the optimal solution is found. The dataset used in this study is the retina dataset, tongue, lenna, baboon, and cameraman. The experimental results show that this method produces the high performance as seen from peak signal-to-noise ratio analysis (PNSR). The PNSR result for retinal image averaged 40.342 dB while for the average tongue image 35.340 dB. For lenna, baboon and cameramen produce an average of 33.781 dB, 33.499 dB, and 34.869 dB. Furthermore, the process of object recognition and identification is expected to use this method to produce a high degree of accuracy.


2015 ◽  
Vol 24 (1) ◽  
pp. 37-54 ◽  
Author(s):  
Asaju La’aro Bolaji ◽  
Ahamad Tajudin Khader ◽  
Mohammed Azmi Al-Betar ◽  
Mohammed A. Awadallah

AbstractThis article presents a Hybrid Artificial Bee Colony (HABC) for uncapacitated examination timetabling. The ABC algorithm is a recent metaheuristic population-based algorithm that belongs to the Swarm Intelligence technique. Examination timetabling is a hard combinatorial optimization problem of assigning examinations to timeslots based on the given hard and soft constraints. The proposed hybridization comes in two phases: the first phase hybridized a simple local search technique as a local refinement process within the employed bee operator of the original ABC, while the second phase involves the replacement of the scout bee operator with the random consideration concept of harmony search algorithm. The former is to empower the exploitation capability of ABC, whereas the latter is used to control the diversity of the solution search space. The HABC is evaluated using a benchmark dataset defined by Carter, including 12 problem instances. The results show that the HABC is better than exiting ABC techniques and competes well with other techniques from the literature.


Author(s):  
Mimoun Younes ◽  
Fouad Khodja ◽  
Riad Lakhdar Kherfene

Environmental legislation, with its increasing pressure on the energy sector to control greenhouse gases, is a driving force to reduce CO2 emissions, forced the power system operators to consider the emission problem as a consequential matter beside the economic problems, so the economic power dispatch problem has become a multi-objective optimization problem. This paper sets up an new hybrid algorithm combined in two algorithm, the harmony search algorithm and ant colony optimization (HSA-ACO), to solve the optimization with combined economic emission dispatch. This problem has been formulated as a multi-objective problem by considering both economy and emission simultaneously. The feasibility of the proposed approach was tested on 3-unit and 6-unit systems. The simulation results show that the proposed algorithm gives comparatively better operational fuel cost and emission in less computational time compared to other optimization techniques.


2018 ◽  
pp. 1-30 ◽  
Author(s):  
Alireza Askarzadeh ◽  
Esmat Rashedi

Harmony search (HS) is a meta-heuristic search algorithm which tries to mimic the improvisation process of musicians in finding a pleasing harmony. In recent years, due to some advantages, HS has received a significant attention. HS is easy to implement, converges quickly to the optimal solution and finds a good enough solution in a reasonable amount of computational time. The merits of HS algorithm have led to its application to optimization problems of different engineering areas. In this chapter, the concepts and performance of HS algorithm are shown and some engineering applications are reviewed. It is observed that HS has shown promising performance in solving difficult optimization problems and different versions of this algorithm have been developed. In the next years, it is expected that HS is applied to more real optimization problems.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2287
Author(s):  
Ruba Obiedat ◽  
Laila Al-Qaisi ◽  
Raneem Qaddoura ◽  
Osama Harfoushi ◽  
Ala’ M. Al-Zoubi

Due to the accelerated growth of symmetrical sentiment data across different platforms, experimenting with different sentiment analysis (SA) techniques allows for better decision-making and strategic planning for different sectors. Specifically, the emergence of COVID-19 has enriched the data of people’s opinions and feelings about medical products. In this paper, we analyze people’s sentiments about the products of a well-known e-commerce website named Alibaba.com. People’s sentiments are experimented with using a novel evolutionary approach by applying advanced pre-trained word embedding for word presentations and combining them with an evolutionary feature selection mechanism to classify these opinions into different levels of ratings. The proposed approach is based on harmony search algorithm and different classification techniques including random forest, k-nearest neighbor, AdaBoost, bagging, SVM, and REPtree to achieve competitive results with the least possible features. The experiments are conducted on five different datasets including medical gloves, hand sanitizer, medical oxygen, face masks, and a combination of all these datasets. The results show that the harmony search algorithm successfully reduced the number of features by 94.25%, 89.5%, 89.25%, 92.5%, and 84.25% for the medical glove, hand sanitizer, medical oxygen, face masks, and whole datasets, respectively, while keeping a competitive performance in terms of accuracy and root mean square error (RMSE) for the classification techniques and decreasing the computational time required for classification.


Sign in / Sign up

Export Citation Format

Share Document