A mixed-integer program and a Lagrangian-based decomposition algorithm for the supply chain network design with quantity discount and transportation modes

2019 ◽  
Vol 137 ◽  
pp. 504-516 ◽  
Author(s):  
M. Kheirabadi ◽  
B. Naderi ◽  
A. Arshadikhamseh ◽  
V. Roshanaei
2019 ◽  
Vol 3 (2) ◽  
pp. 110-130 ◽  
Author(s):  
Dave C. Longhorn ◽  
Joshua R. Muckensturm

Purpose This paper aims to introduce a new mixed integer programming formulation and associated heuristic algorithm to solve the Military Nodal Capacity Problem, which is a type of supply chain network design problem that involves determining the amount of capacity expansion required at theater nodes to ensure the on-time delivery of military cargo. Design/methodology/approach Supply chain network design, mixed integer programs, heuristics and regression are used in this paper. Findings This work helps analysts at the United States Transportation Command identify what levels of throughput capacities, such as daily processing rates of trucks and railcars, are needed at theater distribution nodes to meet warfighter cargo delivery requirements. Research limitations/implications This research assumes all problem data are deterministic, and so it does not capture the variations in cargo requirements, transit times or asset payloads. Practical implications This work gives military analysts and decision makers prescriptive details about nodal capacities needed to meet demands. Prior to this work, insights for this type of problem were generated using multiple time-consuming simulations often involving trial-and-error to explore the trade space. Originality/value This work merges research of supply chain network design with military theater distribution problems to prescribe the optimal, or near-optimal, throughput capacities at theater nodes. The capacity levels must meet delivery requirements while adhering to constraints on the proportion of cargo transported by mode and the expected payloads for assets.


Author(s):  
Hêriş Golpîra

This paper proposes a model to formulate a supply chain network design (SCND) problem against uncertainty. The objective of the model is to minimize total cost of the network. The model employs risk averseness of retailers to obtain more realistic model regarding uncertain demand. Using Conditional Value at Risk (CVaR) to deal with this uncertainty makes the model to be robust. In this way, data-driven approach is used to avoid any distributional assumptions because realizations of uncertain parameters are the only information obtainable. This approach reformulates the initial uncertain model as a mixed integer linear programming problem. Numerical results show that the proposed model is efficient for robust SCND with respect to retailers risk averseness.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Krystel K. Castillo-Villar ◽  
Neale R. Smith ◽  
José F. Herbert-Acero

This paper presents (1) a novel capacitated model for supply chain network design which considers manufacturing, distribution, and quality costs (named SCND-COQ model) and (2) five combinatorial optimization methods, based on nonlinear optimization, heuristic, and metaheuristic approaches, which are used to solve realistic instances of practical size. The SCND-COQ model is a mixed-integer nonlinear problem which can be used at a strategic planning level to design a supply chain network that maximizes the total profit subject to meeting an overall quality level of the final product at minimum costs. The SCND-COQ model computes the quality-related costs for the whole supply chain network considering the interdependencies among business entities. The effectiveness of the proposed solution approaches is shown using numerical experiments. These methods allow solving more realistic (capacitated) supply chain network design problems including quality-related costs (inspections, rework, opportunity costs, and others) within a reasonable computational time.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Jian Wang ◽  
Xueyan Wang ◽  
Mingzhu Yu

This paper studies a supply chain network design model with price competition. The supply chain provides multiple products for a market area in multiple periods. The model considers the location of manufacturers and retailers and assumes a probabilistic customer behavior based on an attraction function depending on both the location and the quality of the retailers. We aim to design the supply chain under the capacity constraint and maximize the supply chain profit in the competitive environment. The problem is formulated as a mixed integer nonlinear programming model. To solve the problem, we propose two heuristic algorithms—Simulated Annealing Search (SA) and Particle Swarm Optimization (PSO)—and numerically demonstrate the effectiveness of the proposed algorithms. Through the sensitivity analysis, we give some management insights.


2021 ◽  
Author(s):  
Reza Yousefi Zenouz ◽  
Aboozar Jamalnia ◽  
Mojtaba Farrokh Farrokh ◽  
Mastaneh Asadi

Abstract Each year, millions of tires reach their end of life. Worn-out tires are either buried or burned, both of which harm the environment through polluting the air and groundwater. Companies need to consider their social responsibility, such as employment and regional development, and the environmental impact of their activities when making strategic and operational decisions. This study addresses the closed-loop supply chain network design (SCND) and operations planning problem with regard to the three dimensions of sustainability using a mathematical programming approach. The options of retreading, recycling, and energy recovery together with the use of green technologies are considered to minimize the environmental impacts. The proposed decision model can help supply chain managers in tire manufacturing industry make better-informed decisions in order to achieve the three-fold objectives of sustainability. The developed mathematical model turns out to be a multi-objective, multi-echelon, and multi-product mixed integer linear programming. The model is solved using the Lp-metric method and CPLEX solver. The scenario approach is used to address the uncertainty in demand of new products and the rate of return of worn-out tires. The model solutions are the optimal location of the facilities considering population density and unemployment rate in addition to economic dimension, the optimal amount of allocation, the flow of materials, and the best green technology selection. Sensitivity analysis is also conducted to validate the model and test the robustness of the obtained solutions. Finally, managerial implications are provided.


Sign in / Sign up

Export Citation Format

Share Document