Detecting Rocks in Challenging Mining Environments using Convolutional Neural Networks and Ellipses as an alternative to Bounding Boxes

2022 ◽  
pp. 116537
Author(s):  
Patricio Loncomilla ◽  
Pavan Samtani ◽  
Javier Ruiz-del-Solar
Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 424 ◽  
Author(s):  
Lino Antoni Giefer ◽  
Juan Daniel Arango Castellanos ◽  
Mohammad Mohammadzadeh Babr ◽  
Michael Freitag

Fruit packaging is a time-consuming task due to its low automation level. The gentle handling required by some kinds of fruits and their natural variations complicates the implementation of automated quality controls and tray positioning for final packaging. In this article, we propose a method for the automatic localization and pose estimation of apples captured by a Red-Green-Blue (RGB) camera using convolutional neural networks. Our pose estimation algorithm uses a cascaded structure composed of two independent convolutional neural networks: one for the localization of apples within the images and a second for the estimation of the three-dimensional rotation of the localized and cropped image area containing an apple. We used a single shot multi-box detector to find the bounding boxes of the apples in the images. Lie algebra is used for the regression of the rotation, which represents an innovation in this kind of application. We compare the performances of four different network architectures and show that this kind of representation is more suitable than using state-of-the-art quaternions. By using this method, we achieved a promising accuracy for the rotation regression of 98.36%, considering an error range lower than 15 degrees, forming a base for the automation of fruit packing systems.


2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


Author(s):  
Edgar Medina ◽  
Roberto Campos ◽  
Jose Gabriel R. C. Gomes ◽  
Mariane R. Petraglia ◽  
Antonio Petraglia

Sign in / Sign up

Export Citation Format

Share Document