Time depended deformation and buckling of viscoelastic thick plates by a fully discretized finite strip method using Third order shear deformation theory

2018 ◽  
Vol 68 ◽  
pp. 38-52 ◽  
Author(s):  
Hossein Amoushahi
2021 ◽  
pp. 109963622110204
Author(s):  
Mohammad Naghavi ◽  
Saeid Sarrami-Foroushani ◽  
Fatemeh Azhari

In this study, static analysis of functionally graded (FG) sandwich plates is performed using the finite strip method based on the refined plate theory (RPT). Two types of common FG sandwich plates are considered. The first sandwich plate is composed of two FG material (FGM) face sheets and a homogeneous ceramic or metal core. The second one consists of two homogeneous fully metal and ceramic face sheets at the top and bottom, respectively, and a FGM core. Differential equations of FG sandwich plates are obtained using Hamilton's principle and stiffness and force matrices are formed using the finite strip method. The central deflection and the normal stress values are obtained for a sinusoidal loaded FG sandwich plate and the accuracy of the results are verified against those obtained from other theories such as the classical plate theory (CPT), the first-order shear deformation theory (FSDT), and the higher order shear deformation theory (HSDT). For the first time, this study presents a finite strip formulation in conjunction with the RPT to analyze FG Sandwich plates. While the proposed method is fast and simple, it is capable of modeling a variety of boundary conditions.


2012 ◽  
Vol 152-154 ◽  
pp. 1477-1482
Author(s):  
Hamid Reza Ovesy ◽  
Jamshid Fazilati

The dynamic instability of cylindrical shell panels having longitudinal stiffener is studied by using the developed finite strip method (FSM). The method is formulated using the third order shear deformation shell's theory of Reddy's form and the Koiter-Sanders theory for cylindrical shells is implemented. The lay-up effects of skin as well as the stiffener are investigated.


2020 ◽  
Vol 71 (7) ◽  
pp. 853-867
Author(s):  
Phuc Pham Minh

The paper researches the free vibration of a rectangular plate with one or more cracks. The plate thickness varies along the x-axis with linear rules. Using Shi's third-order shear deformation theory and phase field theory to set up the equilibrium equations, which are solved by finite element methods. The frequency of free vibration plates is calculated and compared with the published articles, the agreement between the results is good. Then, the paper will examine the free vibration frequency of plate depending on the change of the plate thickness ratio, the length of cracks, the number of cracks, the location of cracks and different boundary conditions


2011 ◽  
Vol 471-472 ◽  
pp. 426-431 ◽  
Author(s):  
Mohammad Hajikazemi ◽  
Hamid Reza Ovesy ◽  
Mohammad Homayoun Sadr-Lahidjani

In the current paper, a new semi-energy finite strip method is developed based on the concept of first order shear deformation theory (FSDT) in order to attempt the post-buckling solution for relatively thick composite plates subjected to uniform end-shortening. The main advantage of the semi-energy finite strip method (FSM) is that it is based on the closed form solution of von Karman’s compatibility equation in order to derive the analytical shape functions for the in-plane displacements fields. The developed finite strip method is applied to analyze the post buckling behavior of a relatively thick anti-symmetric cross-ply composite plate with clamped out-of-plane boundary conditions at its loaded ends. The results are discussed in detail and compared with those obtained from finite element method (FEM) of analysis. The study of the results has provided confidence in the validity and capability of the developed finite strip in handling post-buckling problem of relatively thick laminated plates.


Sign in / Sign up

Export Citation Format

Share Document