Structural model of the OPA1 GTPase domain may explain the molecular consequences of a novel mutation in a family with autosomal dominant optic atrophy

2006 ◽  
Vol 83 (3) ◽  
pp. 702-706 ◽  
Author(s):  
Sharareh Dadgar ◽  
Olivier Hagens ◽  
Seyed Razi Dadgar ◽  
Ehsan Nobakht Haghighi ◽  
Simone Schimpf ◽  
...  
Cell Calcium ◽  
2015 ◽  
Vol 57 (1) ◽  
pp. 49-55 ◽  
Author(s):  
László Fülöp ◽  
Anikó Rajki ◽  
Erika Maka ◽  
Mária Judit Molnár ◽  
András Spät

2012 ◽  
Vol 68 (2) ◽  
pp. 108-110 ◽  
Author(s):  
X. Ayrignac ◽  
C. Liauzun ◽  
G. Lenaers ◽  
D. Renard ◽  
P. Amati-Bonneau ◽  
...  

Author(s):  
Christoph Jüschke ◽  
Thomas Klopstock ◽  
Claudia B. Catarino ◽  
Marta Owczarek-Lipska ◽  
Bernd Wissinger ◽  
...  

Brain ◽  
2006 ◽  
Vol 130 (4) ◽  
pp. 1029-1042 ◽  
Author(s):  
M. V. Alavi ◽  
S. Bette ◽  
S. Schimpf ◽  
F. Schuettauf ◽  
U. Schraermeyer ◽  
...  

2019 ◽  
pp. 29-34
Author(s):  
Matthew J. Thurtell ◽  
Robert L. Tomsak

There is a broad differential diagnosis for bilateral optic neuropathies, including inflammatory, ischemic, compressive, traumatic, nutritional, toxic, and inherited causes. In this chapter, we begin by discussing the approach to the patient who has bilateral symmetric optic neuropathies. We next review the genetic basis, clinical features, and natural history of autosomal dominant optic atrophy. We list other deficits that can occur in up to 20% of patients with this condition, which can include sensorineural hearing loss, ataxia, myopathy, peripheral neuropathy, spastic paraparesis, and chronic progressive external ophthalmoplegia. Lastly, we discuss the evaluation and management approach for autosomal dominant optic atrophy.


Sign in / Sign up

Export Citation Format

Share Document