Effects of different neurotrophic factors on the survival of retinal ganglion cells after a complete intraorbital nerve crush injury: A quantitative in vivo study

2009 ◽  
Vol 89 (1) ◽  
pp. 32-41 ◽  
Author(s):  
Guillermo Parrilla-Reverter ◽  
Marta Agudo ◽  
Paloma Sobrado-Calvo ◽  
Manuel Salinas-Navarro ◽  
María P. Villegas-Pérez ◽  
...  
2021 ◽  
Vol 23 (1) ◽  
pp. 385
Author(s):  
Jie Chen ◽  
Hui Li ◽  
Changming Yang ◽  
Yinjia He ◽  
Tatsuo Arai ◽  
...  

Traumatic nerve injury activates cell stress pathways, resulting in neuronal death and loss of vital neural functions. To date, there are no available neuroprotectants for the treatment of traumatic neural injuries. Here, we studied three important flavanones of citrus components, in vitro and in vivo, to reveal their roles in inhibiting the JNK (c-Jun N-terminal kinase)-JUN pathway and their neuroprotective effects in the optic nerve crush injury model, a kind of traumatic nerve injury in the central nervous system. Results showed that both neural injury in vivo and cell stress in vitro activated the JNK-JUN pathway and increased JUN phosphorylation. We also demonstrated that naringenin treatment completely inhibited stress-induced JUN phosphorylation in cultured cells, whereas nobiletin and hesperidin only partially inhibited JUN phosphorylation. Neuroprotection studies in optic nerve crush injury mouse models revealed that naringenin treatment increased the survival of retinal ganglion cells after traumatic optic nerve injury, while the other two components had no neuroprotective effect. The neuroprotection effect of naringenin was due to the inhibition of JUN phosphorylation in crush-injured retinal ganglion cells. Therefore, the citrus component naringenin provides neuroprotection through the inhibition of the JNK-JUN pathway by inhibiting JUN phosphorylation, indicating the potential application of citrus chemical components in the clinical therapy of traumatic optic nerve injuries.


2020 ◽  
Vol 21 (5) ◽  
pp. 1882
Author(s):  
Ines Rosignol ◽  
Beatriz Villarejo-Zori ◽  
Petra Teresak ◽  
Elena Sierra-Filardi ◽  
Xandra Pereiro ◽  
...  

Mitochondrial damage plays a prominent role in glaucoma. The only way cells can degrade whole mitochondria is via autophagy, in a process called mitophagy. Thus, studying mitophagy in the context of glaucoma is essential to understand the disease. Up to date limited tools are available for analyzing mitophagy in vivo. We have taken advantage of the mito-QC reporter, a recently generated mouse model that allows an accurate mitophagy assessment to fill this gap. We used primary RGCs and retinal explants derived from mito-QC mice to quantify mitophagy activation in vitro and ex vivo. We also analyzed mitophagy in retinal ganglion cells (RGCs), in vivo, using different mitophagy inducers, as well as after optic nerve crush (ONC) in mice, a commonly used surgical procedure to model glaucoma. Using mito-QC reporter we quantified mitophagy induced by several known inducers in primary RGCs in vitro, ex vivo and in vivo. We also found that RGCs were rescued from some glaucoma relevant stress factors by incubation with the iron chelator deferiprone (DFP). Thus, the mito-QC reporter-based model is a valuable tool for accurately analyzing mitophagy in the context of glaucoma.


2014 ◽  
Vol 45 (6) ◽  
pp. 715-721 ◽  
Author(s):  
Yu Wu ◽  
Fan Xu ◽  
Hui Huang ◽  
Lifei Chen ◽  
Meidan Wen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document