Oncolytic adenovirus delivering herpes simplex virus thymidine kinase suicide gene reduces the growth of human retinoblastoma in an in vivo mouse model

2009 ◽  
Vol 89 (2) ◽  
pp. 193-199 ◽  
Author(s):  
Xunda Ji ◽  
Jufeng Zhang ◽  
Lin Cheng ◽  
Fang Wei ◽  
Huiming Li ◽  
...  
1996 ◽  
Vol 106 (6) ◽  
pp. 1163-1168 ◽  
Author(s):  
Bernd Bonnekoh ◽  
David A. Greenhalgh ◽  
Donnie S. Bundman ◽  
Ken-ichiro Kosai ◽  
Shu-Hsia Chen ◽  
...  

1995 ◽  
Vol 15 (10) ◽  
pp. 5322-5328 ◽  
Author(s):  
B Salomon ◽  
S Maury ◽  
L Loubière ◽  
M Caruso ◽  
R Onclercq ◽  
...  

Dividing eukaryotic cells expressing the herpes simplex virus type 1 thymidine kinase (TK) gene are sensitive to the cytotoxic effect of nucleoside analogs such as acyclovir or ganciclovir (GCV). Transgenic mice with cell-targeted expression of this conditional toxin have been used to create animals with temporally controlled cell-specific ablation. In these animal models, which allow the study of the physiological importance of a cell type, males are sterile. In this study, we showed that this phenomenon is due to testis-specific high-level expression of short TK transcripts initiated mainly upstream of the second internal ATG of the TK gene. This expression is DNA methylation independent. To obtain a suicide gene that does not cause male infertility, we generated and analyzed the properties of a truncated TK (delta TK) lacking the sequences upstream of the second ATG. We showed that when expressed at sufficient levels, the functional properties of delta TK are similar to those of TK in terms of thymidine or GCV phosphorylation. This translated into a similar GCV-dependent toxicity for delta TK- or TK-expressing cells, both in vitro and in transgenic mice. However, delta TK behaved differently from TK in two ways. First, it did not cause sterility in delta TK transgenic males. Second, low-level delta TK RNA expression did not confer sensitivity to GCV. The uses of delta TK in cell-specific ablation in transgenic mice and in gene therapy are discussed.


2000 ◽  
Vol 74 (8) ◽  
pp. 3613-3622 ◽  
Author(s):  
Herve Berthomme ◽  
James Lokensgard ◽  
Li Yang ◽  
Todd Margolis ◽  
Lawrence T. Feldman

ABSTRACT Herpes simplex virus type 1 (HSV-1) latent infection in vivo is characterized by the constitutive expression of the latency-associated transcripts (LAT), which originate from the LAT promoter (LAP). In an attempt to determine the functional parts of LAP, we previously demonstrated that viruses harboring a DNA fragment 3′ of the LAT promoter itself were able to maintain detectable promoter expression throughout latency whereas viruses not containing this element could not (J. R. Lokensgard, H. Berthomme, and L. T. Feldman, J. Virol. 71:6714–6719, 1997). This element was therefore called a long-term expression element (LTE). To further study the role of the LTE, we constructed plasmids containing a DNA fragment encompassing the LTE inserted into a synthetic intron between the reporterlacZ gene and either the LAT or the HSV-1 thymidine kinase promoter. Transient-expression experiments with both neuronal and nonneuronal cell lines showed that the LTE locus has an enhancer activity that does not activate the cytomegalovirus enhancer but does activate the promoters such as the LAT promoter and the thymidine kinase promoter. The enhancement of these two promoters occurs in both neuronal and nonneuronal cell lines. Recombinant viruses containing enhancer constructs were constructed, and these demonstrated that the enhancer functioned when present in the context of the viral DNA, both for in vitro infections of cells in culture and for in vivo infections of neurons in mouse dorsal root ganglia. In the infections of mouse dorsal root ganglia, there was a very high level of promoter activity in neurons infected with viruses bearing the LAT promoter-enhancer, but this decreased after the first 2 or 3 weeks. By 18 days postinfection, neurons harboring latent virus without the enhancer showed no β-galactosidase (β-gal) staining whereas those harboring latent virus containing the enhancer continued to show β-gal staining for long periods, extending to at least 6 months postinfection, the longest time examined.


Sign in / Sign up

Export Citation Format

Share Document