Muscle mass and aerobic capacity in older women: Impact of regular exercise at middle age

2021 ◽  
Vol 147 ◽  
pp. 111259
Author(s):  
Peter Edholm ◽  
Jort Veen ◽  
Fawzi Kadi ◽  
Andreas Nilsson
1997 ◽  
Vol 82 (5) ◽  
pp. 1411-1415 ◽  
Author(s):  
David N. Proctor ◽  
Michael J. Joyner

Proctor, David N., and Michael J. Joyner. Skeletal muscle mass and the reduction ofV˙o 2 max in trained older subjects. J. Appl. Physiol.82(5): 1411–1415, 1997.—The role of skeletal muscle mass in the age-associated decline in maximal O2 uptake (V˙o 2 max) is poorly defined because of confounding changes in muscle oxidative capacity and in body fat and the difficulty of quantifying active muscle mass during exercise. We attempted to clarify these issues by examining the relationship between several indexes of muscle mass, as estimated by using dual-energy X-ray absorptiometry and treadmillV˙o 2 max in 32 chronically endurance-trained subjects from four groups ( n = 8/group): young men (20–30 yr), older men (56–72 yr), young women (19–31 yr), and older women (51–72 yr).V˙o 2 max per kilogram body mass was 26 and 22% lower in the older men (45.9 vs. 62.0 ml ⋅ kg−1 ⋅ min−1) and older women (40.0 vs. 51.5 ml ⋅ kg−1 ⋅ min−1). These age differences were reduced to 14 and 13%, respectively, whenV˙o 2 max was expressed per kilogram of appendicular muscle. When appropriately adjusted for age and gender differences in appendicular muscle mass by analysis of covariance, whole bodyV˙o 2 max was 0.50 ± 0.09 l/min less ( P < 0.001) in the older subjects. This effect was similar in both genders. These findings suggest that the reducedV˙o 2 max seen in highly trained older men and women relative to their younger counterparts is due, in part, to a reduced aerobic capacity per kilogram of active muscle independent of age-associated changes in body composition, i.e., replacement of muscle tissue by fat. Because skeletal muscle adaptations to endurance training can be well maintained in older subjects, the reduced aerobic capacity per kilogram of muscle likely results from age-associated reductions in maximal O2 delivery (cardiac output and/or muscle blood flow).


2009 ◽  
Vol 297 (3) ◽  
pp. R744-R755 ◽  
Author(s):  
Andrew C. Betik ◽  
Melissa M. Thomas ◽  
Kathryn J. Wright ◽  
Caitlin D. Riel ◽  
Russell T. Hepple

We previously showed that 7 wk of treadmill exercise training in late-middle-aged rats can reverse the modest reductions in skeletal muscle aerobic function and enzyme activity relative to values in young adult rats ( Exp Physiol 93: 863–871, 2008). The purpose of the present study was to determine whether extending this training program into senescence would attenuate the accelerated decline in the muscle aerobic machinery normally seen at this advanced age. For this purpose, 29-mo-old Fisher 344 Brown-Norway rats underwent 5 or 7 mo of treadmill exercise training. Training resulted in greater exercise capacity during an incremental treadmill exercise test and reduced percent body fat in 34- and 36-mo-old rats and improved survival. Despite these benefits at the whole body level, in situ muscle aerobic capacity and muscle mass were not greater in the trained groups at 34 mo or 36 mo of age. Similarly, the trained groups did not have higher activities of citrate synthase (CS) or Complex IV in homogenates of either the plantaris (fast twitch) or the soleus (slow twitch) muscles at either age. Finally, protein expression of CS (a marker of mitochondrial content) and peroxisome proliferator-activated receptor-γ coactivator-1 (relating to the drive on mitochondrial biogenesis) were not higher in the trained groups. Therefore, although treadmill training from late middle age into senescence had significant benefits on running capacity, survival, and body fat, it did not prevent the declines in muscle mass, muscle aerobic capacity, or mitochondrial enzyme activities normally seen across this age, revealing a markedly diminished plasticity of the aerobic machinery in response to endurance exercise at advanced age.


2019 ◽  
Author(s):  
Elizabeth Curtis ◽  
Justin Liu ◽  
Kate Ward ◽  
Karen Jameson ◽  
Zahra Raisi-Estabragh ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
pp. 37-44
Author(s):  
ZBIGNIEW M. OSSOWSKI

Background: The loss of muscle function and reduced mobility levels are the main reasons for the limitations of independence and disability in older people. The main aim of this study was to determine the relationship between the skeletal muscle index and mobility in older women. Material and methods: ‪The study involved 166 older women. Skeletal muscle mass and other body components were determined by bioimpedance using an InBody 720 device. Functional mobility was evaluated with the timed up-and-go test. 30-second chair stand was also used to measure the level of functional strength in lower extremities. Results: ‪The skeletal muscle index was positively correlated with functional mobility (r=-0.22; p=0.00) and 30-second chair stand (r=-0.47; p=0.00). However, the strength of lower extremities was a significantly better parameter in predicting mobility in older women than the skeletal muscle index and skeletal muscle mass. Conclusions: The functional strength of lower extremity muscles and the skeletal muscle index can have a positive effect on functional mobility in older people. The results may be helpful in clinical practice when diagnosing mobility limitations and in the process of programming physical activity of older women aimed at the prevention of sarcopenia.


Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1156 ◽  
Author(s):  
Andreas Nilsson ◽  
Diego Montiel Rojas ◽  
Fawzi Kadi

The role of dietary protein intake on muscle mass and physical function in older adults is important for the prevention of age-related physical limitations. The aim of the present study was to elucidate links between dietary protein intake and muscle mass and physical function in older women meeting current guidelines of objectively assessed physical activity. In 106 women (65 to 70 years old), protein intake was assessed using a 6-day food record and participants were classified into high and low protein intake groups using two Recommended Dietary Allowance (RDA) thresholds (0.8 g·kg−1 bodyweight (BW) and 1.1 g·kg−1 BW). Body composition, aerobic fitness, and quadriceps strength were determined using standardized procedures, and self-reported physical function was assessed using the SF-12 Health Survey. Physical activity was assessed by accelerometry and self-report. Women below the 0.8 g·kg−1 BW threshold had a lower muscle mass (p < 0.05) with no differences in physical function variables. When based on the higher RDA threshold (1.1 g·kg−1 BW), in addition to significant differences in muscle mass, women below the higher threshold had a significantly (p < 0.05) higher likelihood of having physical limitations. In conclusion, the present study supports the RDA threshold of 0.8 g·kg−1 BW of proteins to prevent the loss of muscle mass and emphasizes the importance of the higher RDA threshold of at least 1.1 g·kg−1 BW to infer additional benefits on constructs of physical function. Our study also supports the role of protein intake for healthy ageing, even in older adults meeting guidelines for physical activity.


2020 ◽  
Vol 34 (4) ◽  
pp. 1008-1016 ◽  
Author(s):  
Paolo M. Cunha ◽  
João Pedro Nunes ◽  
Crisieli M. Tomeleri ◽  
Matheus A. Nascimento ◽  
Brad J. Schoenfeld ◽  
...  

2020 ◽  
Vol 28 (2) ◽  
pp. 242-249
Author(s):  
Thiago Correa Porto Gonçalves ◽  
Atila Alexandre Trapé ◽  
Jhennyfer Aline Lima Rodrigues ◽  
Simone Sakagute Tavares ◽  
Carlos Roberto Bueno Junior

The β2 adrenergic receptor (β2-AR) plays an important role in vascular smooth muscle. However, the interaction between Arg16Gly and Gln27Glu β2-AR polymorphisms, and exercise training has not yet been established. This study evaluated the influence of these β2-AR polymorphisms on body composition, aerobic capacity, blood pressure, lipid profile, nitric oxide, and redox status at baseline and in response to an exercise program in women aged 50–79 years. Genotype and haplotypes were analyzed in association with the previously mentioned variables before and after the multicomponent training (12 weeks, 2 sessions/week, 90 min/session, and exercise intensity between 13 and 15 on the Borg scale). Individuals who carry β2-AR Arg16Arg/Gln27Gln genotypes presented more improvements in blood pressure, body composition, aerobic capacity, and redox status in response to a multicomponent training program compared with individuals who do not carry this haplotype. In some years, the genetic profile may be used to predict which exercise program can induce more health benefits for each person.


Sign in / Sign up

Export Citation Format

Share Document