Determination of chromosome 13 status in bone marrow cells of patients with multiple myeloma using combined morphologic and fluorescence in situ hybridization analysis

2004 ◽  
Vol 32 (3) ◽  
pp. 254-260 ◽  
Author(s):  
Izhar Hardan ◽  
Rachel Rothman ◽  
Alain Gelibter ◽  
Ninette Cohen ◽  
Avichai Shimoni ◽  
...  
Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 495-499 ◽  
Author(s):  
L Zhao ◽  
KS Chang ◽  
EH Estey ◽  
K Hayes ◽  
AB Deisseroth ◽  
...  

Abstract The translocation between chromosomes 15 and 17, t(15;17)(q22–24;q11– 21), is present in the bone marrow cells of most patients with acute promyelocytic leukemia (APL). Although conventional cytogenetic methods are useful for diagnosing this disease, difficulties are experienced in detecting residual disease among those patients who have achieved remission. In this study, we used the fluorescence in situ hybridization (FISH) method to attempt to detect residual leukemic cells in 10 APL patients in clinical remission. The duration of remission ranged from 2 to 93 months at the time of study. Multiple bone marrow samples were analyzed by FISH in most patients. In 6 patients, no cell with t(15;17) was found. These patients remain in complete remission at present (approximately 25 to 33 months since first studied by FISH). In 4 patients, low frequencies of cells with t(15;17) were observed in at least one bone marrow sample examined. All of these patients relapsed within 1 to 14 months. No cell with t(15;17) was identified by the conventional G-banding method in any sample. The FISH results correlated well with that of a two-round nested reverse transcription polymerase chain reaction assay that was performed on the same samples. Thus, our study suggests that FISH is potentially a useful tool for detecting residual APL cells and for identifying patients at high risk of relapse.


Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 495-499
Author(s):  
L Zhao ◽  
KS Chang ◽  
EH Estey ◽  
K Hayes ◽  
AB Deisseroth ◽  
...  

The translocation between chromosomes 15 and 17, t(15;17)(q22–24;q11– 21), is present in the bone marrow cells of most patients with acute promyelocytic leukemia (APL). Although conventional cytogenetic methods are useful for diagnosing this disease, difficulties are experienced in detecting residual disease among those patients who have achieved remission. In this study, we used the fluorescence in situ hybridization (FISH) method to attempt to detect residual leukemic cells in 10 APL patients in clinical remission. The duration of remission ranged from 2 to 93 months at the time of study. Multiple bone marrow samples were analyzed by FISH in most patients. In 6 patients, no cell with t(15;17) was found. These patients remain in complete remission at present (approximately 25 to 33 months since first studied by FISH). In 4 patients, low frequencies of cells with t(15;17) were observed in at least one bone marrow sample examined. All of these patients relapsed within 1 to 14 months. No cell with t(15;17) was identified by the conventional G-banding method in any sample. The FISH results correlated well with that of a two-round nested reverse transcription polymerase chain reaction assay that was performed on the same samples. Thus, our study suggests that FISH is potentially a useful tool for detecting residual APL cells and for identifying patients at high risk of relapse.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4858-4858
Author(s):  
Jun Zhang ◽  
Yongquan Xue ◽  
Jinlan Pan ◽  
Yafang Wu ◽  
Juan Shen ◽  
...  

Abstract Abstract 4858 Objective To determining the clonal origin of dysplatic cells in Myelodysplastic syndromes (MDS) . Methods Karyotypic analyses of bone marrow cells using R-banding technique were carried out to determine the chromosomal abnormalities. Interphase fluorescence in situ hybridization (FISH) and morphologic analysis of bone marrow aspirates were performed in the same cells to investigate the clonal origin of dysplatic cells in 8 MDS patients. Result All patients had clonal karyotypic abnormalities: simple abnormality in 1 patient, complex abnormalities in 6 patients, coexistent of two unrelated clones in 1 patient. Most of dysplastic cells in 7 of 8 MDS patients derived from neoplasia clone while 1 patient had a reverse result,no matter what cell lineage was involved. Some of non-dysplastic cells of all patients derived from malignant clone; in 7 patients, the proportion of dysplastic cells in malignant clone were significantly higher than that of non- malignant clone. Conclusion Most of dysplastic cells in MDS derived from malignant clones, while the minority of them derived from non-malignant clones. Thus, it is reasonable to expect that in most cases myelodysplasia is present in malignant clone and can be taken as an important diagnostic evidence for MDS. Disclosures No relevant conflicts of interest to declare.


1998 ◽  
Vol 102 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Hon Fong L Mark ◽  
Jotica Rehan ◽  
Seamus Mark ◽  
Kathleen Santoro ◽  
Kathleen Zolnierz

Sign in / Sign up

Export Citation Format

Share Document