chromosome 13
Recently Published Documents


TOTAL DOCUMENTS

651
(FIVE YEARS 43)

H-INDEX

49
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Yuhui Du ◽  
Wei Song ◽  
Zhiqiu Yin ◽  
shengbo wu ◽  
jiaheng liu ◽  
...  

Azadirachta indica (neem), an evergreen tree of the Meliaceae family, is a source of the potent biopesticide azadirachtin. The lack of a chromosome-level assembly impedes the understanding of in-depth genomic architecture and the comparative genomic analysis of A. indica. Here, a high-quality genome assembly of A. indica was constructed using a combination of data from Illumina, PacBio, and Hi-C technology, which is the first chromosome-scale genome assembly of A. indica. The genome size of A. indica is 281 Mb anchored to 14 chromosomes (contig N50=6 Mb and scaffold N50=19 Mb). The genome assembly contained 115 Mb repetitive elements and 25,767 protein-coding genes. Evolutional analysis revealed that A. indica did not experience any whole-genome duplication (WGD) event after the core eudicot γ event, but some genes and genome segment might undergo recent duplications. The secondary metabolite clusters, TPS genes, and CYP genes were also identified. Comparative genomic analysis revealed that most of the A. indica-specific TPS genes and CYP genes were located on the terpene-related clusters on chromosome 13. It is suggested that chromosome 13 may play an important role in the specific terpene biosynthesis of A. indica. And the gene duplication events may be responsible for the terpene biosynthesis expansion in A. indica. This will shed light on terpene biosynthesis in A. indica and facilitate comparative genomic research of the family Meliaceae.


2021 ◽  
Author(s):  
Kyle M Benowitz ◽  
Carson W Allan ◽  
Benjamin A Degain ◽  
Xianchun Li ◽  
Jeffrey A Fabrick ◽  
...  

Crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have advanced pest management, but their benefits are diminished when pests evolve resistance. Elucidating the genetic basis of pest resistance to Bt toxins can improve resistance monitoring, resistance management, and design of new insecticides. Here, we investigated the genetic basis of resistance to Bt toxin Cry1Ac in the lepidopteran Helicoverpa zea, one of the most damaging crop pests in the United States. To facilitate this research, we built the first chromosome-level genome assembly for this species. Using a genome-wide association study, fine-scale mapping, and RNA-seq, we identified a 250kb QTL on chromosome 13 that was strongly associated with resistance in a strain of H. zea that had been selected for resistance in the field and lab. This QTL contains no genes with a previously reported role in resistance or susceptibility to Bt toxins. However, within this QTL, we discovered a premature stop codon in a kinesin gene. We hypothesize that this mutation contributes to resistance. The results indicate the mutation on chromosome 13 was necessary but not sufficient for resistance, and therefore conclude that mutations in more than one gene contributed to resistance. Moreover, we found no changes in gene sequence or expression consistently associated with resistance for 11 genes previously implicated in lepidopteran resistance to Cry1Ac. Thus, the results reveal a novel and polygenic basis of resistance and extend the list of genes contributing to pest resistance to Bt toxins.


2021 ◽  
Vol 22 (21) ◽  
pp. 11987
Author(s):  
Darya Bazovkina ◽  
Vladimir Naumenko ◽  
Ekaterina Bazhenova ◽  
Elena Kondaurova

Experiments were carried out on recombinant B6.CBA-D13Mit76C (B6-M76C) and B6.CBA-D13Mit76B (B6-M76B) mouse lines created by transferring a 102.73–118.83 Mbp fragment of chromosome 13, containing the 5-HT1A receptor gene, from CBA or C57BL/6 strains to a C57BL/6 genetic background, correspondingly. We have recently shown different levels of 5-HT1A receptor functionality in these mouse lines. The administration of BDNF (300 ng/mouse, i.c.v.) increased the levels of exploratory activity and intermale aggression only in B6-M76B mice, without affecting depressive-like behavior in both lines. In B6-M76B mice the behavioral alterations were accompanied by a decrease in the 5-HT2A receptor functional activity and the augmentation of levels of serotonin and its main metabolite, 5-HIAA (5-hydroxyindoleacetic acid), in the midbrain. Moreover, the levels of dopamine and its main metabolites, HVA (homovanillic acid) and DOPAC (3,4-dihydroxyphenylacetic acid), were also elevated in the striatum of B6-M76B mice after BDNF treatment. In B6-M76C mice, central BDNF administration led only to a reduction in the functional activity of the 5-HT1A receptor and a rise in DOPAC levels in the midbrain. The obtained data suggest the importance of the 102.73–118.83 Mbp fragment of mouse chromosome 13, which contains the 5-HT1A receptor gene, for BDNF-induced alterations in behavior and the brain monoamine system.


2021 ◽  
Author(s):  
JUSTIN B HACKETT ◽  
James E Glassbrook ◽  
Jennifer McCasland ◽  
Maria C Muniz ◽  
Nasrin Movahhedin ◽  
...  

: Immune checkpoint inhibitors (ICI) have improved outcomes for a variety of malignancies; however, many patients fail to benefit. While tumor-intrinsic mechanisms are likely involved in therapy resistance, it is unclear to what extent host genetic background influences response. To investigate this, we utilized the Diversity Outbred (DO) and Collaborative Cross (CC) mouse models. DO mice are an outbred stock generated by crossbreeding 8 inbred founder strains, and CC mice are recombinant inbred mice generated from the same 8 founders. We generated 207 DOB6F1 mice representing 48 DO Dams and demonstrated that these mice reliably accept the C57BL/6 syngeneic B16F0 tumor and that host genetic background influences response to ICI. Genetic linkage analysis from 142 mice identified multiple regions including one within chromosome 13 that associated with therapeutic response. We utilized 6 CC strains bearing the positive (NZO) or negative (C57BL/6) driver genotype in this locus. We found that 2/3 of predicted responder CCB6F1 crosses show reproducible ICI response. The chromosome 13 locus contains the murine prolactin family, which is a known immunomodulating cytokine associated with various autoimmune disorders. To directly test whether prolactin influences ICI response rates, we implanted inbred C57BL/6 mice with subcutaneous slow-release prolactin pellets to induce mild hyperprolactinemia. Prolactin augmented ICI response against B16F0, with 5/8 mice exhibiting slowed tumor growth relative to controls. This study highlights the role of host genetics in ICI response and supports the use of F1 crosses in the DO and CC mouse populations as powerful cancer immunotherapy models.


2021 ◽  
Vol 60 (4) ◽  
pp. 771-774
Author(s):  
Chih-Ping Chen ◽  
Chen-Yu Chen ◽  
Schu-Rern Chern ◽  
Shin-Wen Chen ◽  
Fang-Tzu Wu ◽  
...  

2021 ◽  
Author(s):  
Elisabet Bjanes ◽  
Reyna Garcia Sillas ◽  
Rina Matsuda ◽  
Benjamin Demarco ◽  
Timothée Fettrelet ◽  
...  

Cell death plays a critical role in inflammatory responses. During pyroptosis, inflammatory caspases cleave Gasdermin D (GSDMD) to release an N-terminal fragment that generates plasma membrane pores that mediate cell lysis and IL-1 cytokine release. Terminal cell lysis and IL-1β release following caspase activation can be uncoupled in certain cell types or in response to particular stimuli, a state termed hyperactivation. However, the factors and mechanisms that regulate terminal cell lysis downstream of GSDMD cleavage remain poorly understood. In the course of studies to define regulation of pyroptosis during Yersinia infection, we identified a line of Card19-/- mice whose macrophages were protected from cell death and showed reduced pore formation during apoptosis or pyroptosis, yet had wild-type levels of caspase activation, IL-1 secretion, and GSDMD cleavage. Unexpectedly, CARD19, a mitochondrial CARD-containing protein, was not directly responsible for this, as two independently-generated CRISPR/Cas9 Card19 knockout mice showed no defect in macrophage cell lysis. The original Card19-/- line was generated in a 129SvEvBrd background, and SNP analysis revealed a six megabase region of 129 origin co-segregating with the Card19 locus. Card19 is located on chromosome 13, adjacent to Ninj1, which was recently reported to regulate cell lysis downstream of GSDMD activation. Nonetheless, we could not detect major defects in NINJ1 protein expression or mutations in Ninj1 coding sequence in Card19-/- mice. Mice from the original Card19-/- line exhibited significantly increased susceptibility to Yersinia infection, demonstrating that cell lysis itself plays a key role in protection against bacterial infection. Our findings identify a locus on murine chromosome 13 that regulates the ability of macrophages to undergo plasma membrane rupture downstream of gasdermin cleavage, and implicates additional NINJ1-independent factors that control terminal cell lysis.


Author(s):  
Housam AL Madani ◽  
Soltan Hassan ◽  
Ghada Ajwa ◽  
Basel Dahlawi

Background: Factor VII deficiency is rare inherited bleeding disorders, have been identified in the Factor VII gene located on chromosome 13 with very few cases reported. Factor VII deficiency was first described by Alexander et al. in 1951.The disorder has also been known as Alexander's disease. It is the rare inherited bleeding disorders’ with an estimated incidence of 1 case per 3,00,000 to 5,00,000 individuals. Objective and method: We did a case report and literature review for deficiency of coagulation factors VII was found in a 4 years patient who had chromosomal aberration 13q deletion syndrome (46, XX, del 13q32-13q33). This loci involved in synthesis or constitution of factor VII. Results: A review of the gene map of chromosome 13 indicated that Factors VII and X are coded on the long arm of chromosome 13, within the deleted region. Conclusion: Congenital Factor VII deficiency is a rare cause of bleeding disorder, which should be suspected in a bleeding child presenting in infancy when platelets and aPTT are normal with abnormal PT. Congenital Factor VII deficiency association with 46, XX, del (13q32– 13q33) syndrome is very rare disorder and further cases should be reported to know the outcome and the risk of complication in such a cases.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-3
Author(s):  
Housam AL Madani ◽  
Soltan Hassan ◽  
Ghada Ajwa, ◽  
Basel Dahlawi

Background: Factor VII deficiency is rare inherited bleeding disorders, have been identified in the Factor VII gene located on chromosome 13 with very few cases reported. Factor VII deficiency was first described by Alexander et al. in 1951.The disorder has also been known as Alexander's disease. It is the rare inherited bleeding disorders’ with an estimated incidence of 1 case per 3,00,000 to 5,00,000 individuals. Objective and method: We did a case report and literature review for deficiency of coagulation factors VII was found in a 4 years patient who had chromosomal aberration 13q deletion syndrome (46, XX, del 13q32-13q33). This loci involved in synthesis or constitution of factor VII. Results: A review of the gene map of chromosome 13 indicated that Factors VII and X are coded on the long arm of chromosome 13, within the deleted region. Conclusion: Congenital Factor VII deficiency is a rare cause of bleeding disorder, which should be suspected in a bleeding child presenting in infancy when platelets and aPTT are normal with abnormal PT. Congenital Factor VII deficiency association with 46, XX, del (13q32– 13q33) syndrome is very rare disorder and further cases should be reported to know the outcome and the risk of complication in such a cases.


2021 ◽  
Author(s):  
Bruno Custódio Silva ◽  
Maria Isabelle Nakano Vieira ◽  
Gisele Delazeri ◽  
Esther Rodrigues Rocha Alves ◽  
Ana Luíza Kolling Konopka ◽  
...  

Context: Chromosome 13 trisomy, or Patau syndrome (PS), is a genetic condition characterized by multiple findings and usually poor survival rate. However, its clinical presentation can be variable. Case report: A male patient was referred for evaluation due to a syndromic aspect. He was born by normal delivery, at term, weighing 4700 g. On physical exam, at 2 months, two areas of scaly aplasia on the scalp were shown as well as left coloboma of the iris, bulbous nose with small nostrils, ears with oversized helices, micrognathia, umbilical hernia, clinodactyly of the index finger of the hand left and the 4th and 5th toes of the left foot. Echocardiography revealed tetralogy of Fallot. The karyotype showed a free trisomy of chromosome 13 (47, XY, + 13), compatible with the diagnosis of PS. The patient died at 9 months of age due to complications from bronchopneumonia and had evolved with a delay in neuropsychomotor development at that moment. Conclusions: There are findings that stand out among patients with PS and that very often lead to diagnosis, such as micro/anophthalmia, bilateral cleft lip/palate and polydactyly. It is interesting in our case that the patient did not have any of them, which made it difficult to identify. In addition, from a neurological point of view, the findings were quite common; however, in our patient, there was only a delay in neuropsychomotor development, pointing out that the neurological findings can also be quite variable.


Sign in / Sign up

Export Citation Format

Share Document