scholarly journals Combined SCI and TBI: Recovery of forelimb function after unilateral cervical spinal cord injury (SCI) is retarded by contralateral traumatic brain injury (TBI), and ipsilateral TBI balances the effects of SCI on paw placement

2013 ◽  
Vol 248 ◽  
pp. 136-147 ◽  
Author(s):  
Tomoo Inoue ◽  
Amity Lin ◽  
Xiaokui Ma ◽  
Stephen L. McKenna ◽  
Graham H. Creasey ◽  
...  
2018 ◽  
Vol 35 (18) ◽  
pp. 2195-2207 ◽  
Author(s):  
Aditi Falnikar ◽  
Jarred Stratton ◽  
Ruihe Lin ◽  
Carrie E. Andrews ◽  
Ashley Tyburski ◽  
...  

This chapter discusses traumatic spinal cord and brain injuries. The first three studies review the background and key findings of the third National Acute Spinal Cord Injury Study (NASCIS) trial, examine the efficacy of the Canadian C-Spine Rule in the evaluation of cervical spine injuries in alert and stable trauma patients; and describe the development of the Thoracolumbar Injury Classification and Severity Score (TLICS) classification system. The next two studies assess the effect of early surgical decompression in patients with traumatic cervical spinal cord injury and delineate the role of secondary brain injury in determining patient outcome in severe traumatic brain injury. The following set of four studies evaluates the efficacy of phenytoin in preventing posttraumatic seizures, as well as the efficacy of intracranial pressure monitoring, induction of hypothermia, and decompressive craniectomy for severe traumatic brain injury. The last study, which is of historical value, identifies predictors of outcome in comatose patients with traumatic acute subdural hematoma.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1057
Author(s):  
Riccardo Bravi ◽  
Stefano Caputo ◽  
Sara Jayousi ◽  
Alessio Martinelli ◽  
Lorenzo Biotti ◽  
...  

Residual motion of upper limbs in individuals who experienced cervical spinal cord injury (CSCI) is vital to achieve functional independence. Several interventions were developed to restore shoulder range of motion (ROM) in CSCI patients. However, shoulder ROM assessment in clinical practice is commonly limited to use of a simple goniometer. Conventional goniometric measurements are operator-dependent and require significant time and effort. Therefore, innovative technology for supporting medical personnel in objectively and reliably measuring the efficacy of treatments for shoulder ROM in CSCI patients would be extremely desirable. This study evaluated the validity of a customized wireless wearable sensors (Inertial Measurement Units—IMUs) system for shoulder ROM assessment in CSCI patients in clinical setting. Eight CSCI patients and eight healthy controls performed four shoulder movements (forward flexion, abduction, and internal and external rotation) with dominant arm. Every movement was evaluated with a goniometer by different testers and with the IMU system at the same time. Validity was evaluated by comparing IMUs and goniometer measurements using Intraclass Correlation Coefficient (ICC) and Limits of Agreement (LOA). inter-tester reliability of IMUs and goniometer measurements was also investigated. Preliminary results provide essential information on the accuracy of the proposed wireless wearable sensors system in acquiring objective measurements of the shoulder movements in CSCI patients.


2021 ◽  
Vol 284 ◽  
pp. 103568
Author(s):  
Pauline Michel-Flutot ◽  
Arnaud Mansart ◽  
Therese B. Deramaudt ◽  
Isley Jesus ◽  
Kun-Ze Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document