Subcooled and saturated water flow boiling pressure drop in small diameter helical coils at low pressure

2008 ◽  
Vol 32 (6) ◽  
pp. 1301-1312 ◽  
Author(s):  
Andrea Cioncolini ◽  
Lorenzo Santini ◽  
Marco E. Ricotti
1997 ◽  
Vol 24 (2) ◽  
pp. 231-239 ◽  
Author(s):  
A. Beretta ◽  
P. Ferrari ◽  
L. Galbiati ◽  
P.A. Andreini

2017 ◽  
Vol 124 ◽  
pp. 1061-1074 ◽  
Author(s):  
Jianguo Yan ◽  
Pengcheng Guo ◽  
Qincheng Bi ◽  
Zhaohui Liu ◽  
Qiaoling Zhang ◽  
...  

Author(s):  
Ankit Kalani ◽  
Satish G. Kandlikar

Heat dissipation beyond 1 kW/cm2 accompanied with high heat transfer coefficient and low pressure drop using water has been a long-standing goal in the flow boiling research directed toward electronic cooling application. In the present work, three approaches are combined to reach this goal: (a) a microchannel with a manifold to increase critical heat flux (CHF) and heat transfer coefficient (HTC), (b) a tapered manifold to reduce the pressure drop, and (c) high flow rates for further enhancing CHF from liquid inertia forces. A CHF of 1.07 kW/cm2 was achieved with a heat transfer coefficient of 295 kW/m2°C with a pressure drop of 30 kPa. Effect of flow rate on CHF and HTC is investigated. High speed visualization to understand the underlying bubble dynamics responsible for low pressure drop and high CHF is also presented.


Author(s):  
Levi A. Campbell ◽  
Satish Kandlikar

Heat transfer and pressure drop, are experimentally recorded for flow boiling water in a single 706 μm circular copper channel 158.75 mm long. Heat is supplied by heat transfer oil at specified temperatures to a helical channel in the test section. In contrast to other current experimental techniques for flow boiling in small diameter tubes, a uniform temperature boundary condition is employed rather than a constant heat flux condition. The principal results of these experiments are two-phase flow boiling heat transfer rates and an analysis of the time-dependent pressure drop signature during two-phase flow in a minichannel. The range of experiments includes mass fluxes of 43.8–3070 kg/m2s and wall temperatures of 100°C–171.2°C. In all cases the test section water inlet is subcooled to between 72.9°C and 99.6°C. The inlet pressures used are 1.1–230.5 kPa (gage).


2013 ◽  
Vol 651 ◽  
pp. 525-529
Author(s):  
Mao Yu Wen ◽  
Kang Jang Jang

This study presents an experimental investigation of the characteristics of the flow boiling heat transfer and pressure drop for refrigerant of R134a flowing in a small - diameter evaporative tube with the pipe sections having increased diameters. The experiments were performed at the saturation temperature of 5°C , heat flux of 5.12 ~ 10.96 ( KW/m2), mass flux of 200~600 ( kg/m2s), different length-to-diameter ratios of the test tubes and refrigerant quality of 0.07~0.78, and based on the same surface area of heat transfer. The enhancement performance ratios, θa/s for the tubes with the pipe sections having increased diameters relative to the smooth tube are higher than 1 (about 1.01~1.10). It means that the augmented tubes show the better overall performance than the smooth tube under study.


Sign in / Sign up

Export Citation Format

Share Document