Two-phase flow visualization and heat transfer performance of convective boiling in micro heat exchangers

2014 ◽  
Vol 57 ◽  
pp. 358-364 ◽  
Author(s):  
Wei-Chi Liu ◽  
Chien-Yuh Yang
Author(s):  
Guangwen Jiang ◽  
Jianmin Gao ◽  
Xiaojun Shi ◽  
Wang Zhao ◽  
Yunlong Li

The heat and flow characteristics of mist/steam two-phase flow in U-shaped internal cooling passage of gas turbine blade are studid numerically in this paper. The standard k-ε model was used as the turbulence model combined with the DPM model to calculate the influence of mist/steam mass ratio and mist diameter on flow and heat transfer of U-passage with different shaped ribs. The result indicates that under the same working condition, the U-shaped channel with 45 deg. V-shaped ribs has better heat transfer performance than other channels and heat transfer non-uniformity of the U-shaped channel with 75 deg. ribs is the worst among all channels studied in this paper. The heat transfer performance of the U-shaped channel with V-shaped ribs is higher than that of the channel with paralleled ribs. As for the mist/steam cooling in U-shaped passage with same ribs structure, heat transfer non-uniformity increases with the increasing of heat transfer performance. When mists diameter increases from 5μm to 15μm, the heat transfer performance of the Second-Flow-Passage increases obviously and the heat transfer non-uniformity increases at the same time. The heat transfer performance has not been further enhanced when the mists diameter continuously increases after mist diameter are larger than 10μm.


2020 ◽  
Vol 155 ◽  
pp. 111543
Author(s):  
Venkata Nagaraju M ◽  
Mainak Bandyopadhyay ◽  
Mahendrajit Singh ◽  
Arun Chakraborty ◽  
Jaydeep Joshi ◽  
...  

Author(s):  
Raffaele L. Amalfi ◽  
Todd Salamon ◽  
Filippo Cataldo ◽  
Jackson B. Marcinichen ◽  
John R. Thome

Abstract The present study is focused on the experimental characterization of two-phase heat transfer performance and pressure drops within an ultra-compact heat exchanger (UCHE) suitable for electronics cooling applications. In this specific work, the UCHE prototype is anticipated to be a critical component for realizing a new passive two-phase cooling technology for high-power server racks, as it is more compact and lighter weight than conventional heat exchangers. This technology makes use of a novel combination of thermosyphon loops, at the server-level and rack-level, to passively cool an entire rack. In the proposed two-phase cooling technology, a smaller form factor UCHE is used to transfer heat from the server-level thermosyphon cooling loop to the rack-level thermosyphon cooling loop, while a larger form factor UCHE is used to reject the total heat from the server rack into the facility-level cooling loop. The UCHE is composed of a double-side-copper finned plate enclosed in a stainless steel enclosure. The geometry of the fins and channels on both sides are optimized to enhance the heat transfer performance and flow stability, while minimizing the pressure drops. These features make the UCHE the ideal component for thermosyphon cooling systems, where low pressure drops are required to achieve high passive flow circulation rates and thus achieve high critical heat flux values. The UCHE’s thermal-hydraulic performance is first evaluated in a pump-driven system at the Laboratory of Heat and Mass Transfer (LTCM-EPFL), where experiments include many configurations and operating conditions. Then, the UCHE is installed and tested as the condenser of a thermosyphon loop that rejects heat to a pumped refrigerant system at Nokia Bell Labs, in which both sides operate with refrigerants in phase change (condensation-to-boiling). Experimental results demonstrate high thermal performance with a maximum heat dissipation density of 5455 (kW/m3/K), which is significantly larger than conventional air-cooled heat exchangers and liquid-cooled small pressing depth brazed plate heat exchangers. Finally, a thermal performance analysis is presented that provides guidelines in terms of heat density dissipations at the server- and rack-level when using passive two-phase cooling.


Sign in / Sign up

Export Citation Format

Share Document