Experimental characterization of two-phase flow patterns in a slit microchannel

2019 ◽  
Vol 103 ◽  
pp. 262-273 ◽  
Author(s):  
Fedor Ronshin ◽  
Evgeny Chinnov
2009 ◽  
Vol 64 (19) ◽  
pp. 4186-4195 ◽  
Author(s):  
Odile Gerbaux ◽  
Thibaut Vercueil ◽  
Alain Memponteil ◽  
Bruno Bador

2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Renato P. Coutinho ◽  
Paulo J. Waltrich ◽  
Wesley C. Williams ◽  
Parviz Mehdizadeh ◽  
Stuart Scott ◽  
...  

Abstract Liquid-assisted gas-lift (LAGL) is a recently developed concept to unload wells using a gas–liquid fluid mixture. The success deployment of the LAGL technology is related to the behavior of two-phase flow through gas-lift valves. For this reason, this work presents an experimental and numerical study on two-phase flow through orifice gas-lift valves used in liquid-assisted gas-lift unloading. To the knowledge of the authors, there is no investigation in the literature on experimental characterization of two-phase flow through gas-lift valves. Experimental data are presented for methane-water flow through gas-lift valves with different orifice port sizes: 12.7 and 17.5 mm. The experiments were performed for pressures ranging from 1.00 to 9.00 MPa, gas flow rates from 0 to 4.71 m3/h, and water flow rate from 0 to 0.68 m3/min. The experimental results are compared to numerical models published in the literature for two-phase flow through restrictions and to commercial multiphase flow simulators. It is observed that some models developed for two-phase flow through restrictions could successfully characterize two-phase flow thorough gas-lift valves with errors lower than 10%. However, it is first necessary to experimentally determine the discharge coefficient (CD) for each gas-lift valve. The commercial flow simulators showed a similar performance as the models available in the literature.


2014 ◽  
Vol 525 ◽  
pp. 256-259
Author(s):  
Wen Peng Hong ◽  
Guo Qing Niu ◽  
Ming Liang Jin

To investigate flow characteristics by high speed video systems, experimental study was conducted to gas-liquid two-phase flow in horizontal round small tube with diameter of 5.5 and 2.6 mm, the typical flow pattern images were obtained, but stratified flow of the conventional size horizontal channel had not been discovered. Gas and liquid superficial velocities range from 0.1 to 100 ms-1, and 0.01to 10.0 ms-1 respectively. Flow patterns for co-current flow of air-water mixtures in horizontal round tubes are determined by high-speed video analysis to develop flow regime maps and the transitions between these flow regimes. Comparisons with the relevant literatures show that diameter and surface tension effects play an important role in determining the flow patterns and transitions between them.


2018 ◽  
Author(s):  
Munzarin Morshed ◽  
Syed Imtiaz ◽  
Mohammad Aziz Rahman

Sign in / Sign up

Export Citation Format

Share Document