Experimental Characterization of Two-Phase Flow Through Valves Applied to Liquid-Assisted Gas-Lift

2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Renato P. Coutinho ◽  
Paulo J. Waltrich ◽  
Wesley C. Williams ◽  
Parviz Mehdizadeh ◽  
Stuart Scott ◽  
...  

Abstract Liquid-assisted gas-lift (LAGL) is a recently developed concept to unload wells using a gas–liquid fluid mixture. The success deployment of the LAGL technology is related to the behavior of two-phase flow through gas-lift valves. For this reason, this work presents an experimental and numerical study on two-phase flow through orifice gas-lift valves used in liquid-assisted gas-lift unloading. To the knowledge of the authors, there is no investigation in the literature on experimental characterization of two-phase flow through gas-lift valves. Experimental data are presented for methane-water flow through gas-lift valves with different orifice port sizes: 12.7 and 17.5 mm. The experiments were performed for pressures ranging from 1.00 to 9.00 MPa, gas flow rates from 0 to 4.71 m3/h, and water flow rate from 0 to 0.68 m3/min. The experimental results are compared to numerical models published in the literature for two-phase flow through restrictions and to commercial multiphase flow simulators. It is observed that some models developed for two-phase flow through restrictions could successfully characterize two-phase flow thorough gas-lift valves with errors lower than 10%. However, it is first necessary to experimentally determine the discharge coefficient (CD) for each gas-lift valve. The commercial flow simulators showed a similar performance as the models available in the literature.

2009 ◽  
Vol 64 (19) ◽  
pp. 4186-4195 ◽  
Author(s):  
Odile Gerbaux ◽  
Thibaut Vercueil ◽  
Alain Memponteil ◽  
Bruno Bador

2011 ◽  
Vol 54 (9) ◽  
pp. 2412-2420 ◽  
Author(s):  
ZhaoQin Huang ◽  
Jun Yao ◽  
YueYing Wang ◽  
Ke Tao

Author(s):  
Naoki Matsushita ◽  
Akinori Furukawa ◽  
Kusuo Okuma ◽  
Satoshi Watanabe

A tandem arrangement of double rotating cascades and single diffuser cascade, proposed as a centrifugal pump with high performance in air-water two-phase flow condition, yields lower head due to the smallness of the impeller outlet in comparison with a impeller with large outlet diameter and no diffuser. Influences of impeller diameter change and installation of diffuser blades on two-phase flow performance were experimentally investigated under the case of the same volute casing. As the result, the similarity law of the diameter of impeller having the similar blade geometry and the rotational speed is satisfied even in two-phase flow condition. Comparing pump performances between a large impeller without diffuser blades and a small one with diffuser blades, higher two-phase flow performance is obtained by controlling the rotational speed of a small impeller with diffuser blades in the range of small water flow rates, while a large impeller with no diffuser gives high performance in the range of high water flow rate and small air flow rate.


2019 ◽  
Vol 13 (1) ◽  
pp. 51-56
Author(s):  
Grzegorz Górski ◽  
Grzegorz Litak ◽  
Romuald Mosdorf ◽  
Andrzej Rysak

Abstract By changing the air and water flow relative rates in the two-phase (air-water) flow through a minichannel, we observe aggregation and partitioning of air bubbles and slugs of different sizes. An air bubble arrangement, which show non-periodic and periodic patterns. The spatiotemporal behaviour was recorded by a digital camera. Multiscale entropy analysis is a method of measuring the time series complexity. The main aim of the paper was testing the possibility of implementation of multiscale entropy for two-phase flow patterns classification. For better understanding, the dynamics of the two-phase flow patterns inside the minichannel histograms and wavelet methods were also used. In particular, we found a clear distinction between bubbles and slugs formations in terms of multiscale entropy. On the other hand, the intermediate region was effected by appearance of both forms in non-periodic and periodic sequences. The preliminary results were confirmed by using histograms and wavelets.


2020 ◽  
Vol 155 ◽  
pp. 1-11 ◽  
Author(s):  
Meihua Chen ◽  
Haifeng Lu ◽  
Yong Jin ◽  
Xiaolei Guo ◽  
Xin Gong ◽  
...  

Author(s):  
Akinori Furukawa ◽  
Satoshi Ohshita ◽  
Kusuo Okuma ◽  
Satoshi Watanabe

A centrifugal impeller, the pumping action of which could be highly kept even at an air-water two-phase flow condition of inlet void fraction more than 30% in the region of relatively high water flow rate, has been developed. In the present paper, the design concept of two-phase flow impeller is described, at first, with experimental results. The short bladed forward impeller with high outlet blade angle was decided to keep theoretical head higher even in two-phase flow condition and to disperse the air accumulating region on the suction blade surface by the water jet flow coming from the pressure side. Furthermore, the tandem arrangement of outer and inner rotating cascades with the same blade numbers was adopted to suppress the rotating stall phenomena appearing in the case of a single stage of outer cascade. It should be noted that these results were obtained with operating a boost pump installed upstream of mixing section of air and water, that is not an actual operation of two-phase flow pump. Secondly, the operating characteristics of this two-phase flow pump with change of air flow rate were investigated experimentally without operating the boost pump. As the trajectory of operating point with increasing air flow rate appears along the resistance curve of piping system, the impossibility of pumping occurs at lower air flow rate even though pump head takes a positive value at high air flow rate with increasing water flow rate. It is recognized that it is necessary to improve two-phase flow head characteristic curves in the region of low water flow rate to operate in wider two-phase flow conditions.


Author(s):  
Mohamed H Mansour ◽  
Ali A Zahran ◽  
Lotfy H Rabie ◽  
Ibrahim M Shabaka

The horizontal bubbly two-phase flow is preferably used in various industrial applications because it provides high interfacial areas which enhance the heat and mass transfer. In the present research, the phase distribution of controlled air-water flow in a horizontal acrylic round pipe with 60 mm inside diameter (D) has been investigated experimentally and modeled numerically. The modeled differential pressure and the mixture velocity profile at a distance of 33D from the mixing section (fully developed region) are computed numerically and compared with those obtained experimentally from the two-phase flow system established and maintained at the National Institute of Standards (NIS-Egypt). Furthermore, the numerical and the experimental data have been compared with previous correlations and models. Reasonable quantitative agreement between all data is found. An electronic device based on Arduino Uno board was designed and used with careful data manipulation for measuring the slug bubble velocity. The results point out that the air volume fraction has a maximum value at the upper pipe wall as the gas bubbles tend to migrate to the upper wall. A new correlation was obtained for bubble migration length to the upper pipe wall which is very important in chemical industrial processes and other engineering application.


Sign in / Sign up

Export Citation Format

Share Document