scholarly journals Geometry and orientation effects in non-uniformly heated microchannel heat exchangers using supercritical carbon dioxide

2020 ◽  
Vol 112 ◽  
pp. 109979 ◽  
Author(s):  
Saad A. Jajja ◽  
Jessa M. Sequeira ◽  
Brian M. Fronk
Author(s):  
Shaun D. Sullivan ◽  
Jason Farias ◽  
James Kesseli ◽  
James Nash

Supercritical carbon dioxide (sCO2) Brayton cycles hold great promise as they can achieve high efficiencies — in excess of 50% — even at relatively moderate temperatures of 700–800 K. However, this high performance is contingent upon high-effectiveness recuperating and heat rejection heat exchangers within the cycle. A great deal of work has gone into development of these heat exchangers as they must operate not only at elevated temperatures and very high pressures (20–30 MPa), but they must also be compact, low-cost, and long-life components in order to fully leverage the benefits of the sCO2 power cycle. This paper discusses the mechanical design and qualification for a novel plate-fin compact heat exchanger designed for sCO2 cycle recuperators and waste heat rejection heat exchangers, as well as direct sCO2 solar absorber applications. The architecture may furthermore be extended to other very high pressure heat exchanger applications such as pipeline natural gas and transcritical cooling cycles. The basic heat exchanger construction is described, with attention given to those details which have a direct impact on the durability of the unit. Modeling and analysis of various mechanical failure modes — including burst strength, creep, and fatigue — are discussed. The design and construction of test sections, test rigs, and testing procedures are described, along with the test results that demonstrate that the tested design has an operating life well in excess of the 100,000 cycles/90,000 hour targets. Finally, the application of these findings to a set of design tools for future units is demonstrated.


Author(s):  
Alan Kruizenga ◽  
Mark Anderson ◽  
Roma Fatima ◽  
Michael Corradini ◽  
Aaron Towne ◽  
...  

The increasing importance of improving efficiency and reducing capital costs has lead to significant work studying advanced Brayton cycles for high temperature energy conversion. Using compact, highly efficient, diffusion-bonded heat exchangers for the recuperators, has been a noteworthy improvement in the design of advanced carbon dioxide Brayton Cycles. These heat exchangers will operate near the pseudocritical point of carbon dioxide, making use of the drastic variation of the thermo-physical properties. This paper focuses on the experimental measurements of heat transfer under cooling conditions, as well as pressure drop characteristics within a prototypic printed circuit heat exchanger. Studies utilize type-316 stainless steel, nine channel, semi-circular test section, and supercritical carbon dioxide serves as the working fluid throughout all experiments. The test section channels have a hydraulic diameter of 1.16mm and a length of 0.5m. The mini-channels are fabricated using current chemical etching technology, emulating techniques used in current diffusion bonded printed circuit heat exchanger manufacturing. Local heat transfer values were determined using measured wall temperatures and heat fluxes over a large set of experimental parameters that varied system pressure, inlet temperature, and mass flux. Experimentally determined heat transfer coefficients and pressure drop data are compared to correlations and earlier data available in literature. Modeling predictions using the CFD package FLUENT are included to supplement experimental data. All nine channels were modeled using known inlet conditions and measured wall temperatures as boundary conditions. The FLUENT results show excellent agreement in total power removal for the near pseudocritical region, as well as regions where carbon dioxide is a high or low density fluid.


Author(s):  
Alan Kruizenga ◽  
Mark Anderson ◽  
Roma Fatima ◽  
Michael Corradini ◽  
Aaron Towne ◽  
...  

The increasing importance of improving efficiency and reducing capital costs has led to significant work studying advanced Brayton cycles for high temperature energy conversion. Using compact, highly efficient, diffusion-bonded heat exchangers for the recuperators has been a noteworthy improvement in the design of advanced carbon dioxide Brayton cycles. These heat exchangers will operate near the pseudocritical point of carbon dioxide, making use of the drastic variation of the thermophysical properties. This paper focuses on the experimental measurements of heat transfer under cooling conditions, as well as pressure drop characteristics within a prototypic printed circuit heat exchanger. Studies utilize type-316 stainless steel, nine channel, semi-circular test section, and supercritical carbon dioxide serves as the working fluid throughout all experiments. The test section channels have a hydraulic diameter of 1.16 mm and a length of 0.5 m. The mini-channels are fabricated using current chemical etching technology, emulating techniques used in current diffusion-bonded printed circuit heat exchanger manufacturing. Local heat transfer values were determined using measured wall temperatures and heat fluxes over a large set of experimental parameters that varied system pressure, inlet temperature, and mass flux. Experimentally determined heat transfer coefficients and pressure drop data are compared to correlations and earlier data available in literature. Modeling predictions using the computational fluid dynamics (CFD) package FLUENT are included to supplement experimental data. All nine channels were modeled using known inlet conditions and measured wall temperatures as boundary conditions. The CFD results show excellent agreement in total heat removal for the near pseudocritical region, as well as regions where carbon dioxide is a high or low density fluid.


Author(s):  
Anton V. Moisseytsev ◽  
James J. Sienicki ◽  
David C. Wade

Recent development of the Secure Transportable Autonomous Reactor-Liquid Metal (STAR-LM) lead-cooled natural circulation fast reactor (LFR) has been directed at coupling to an advanced power conversion system that utilizes a gas turbine Brayton cycle with supercritical carbon dioxide (S-CO2) as the working fluid. A key ingredient in achieving a coupled plant having a high efficiency are the modular lead-to-CO2 heat exchangers that must fit within the available volume inside the reactor vessel and must heat the S-CO2 to a high temperature. Thermal hydraulic performance and feasibility of seven different heat exchanger concepts has been investigated with respect to the achievement of a suitably high Brayton cycle efficiency for the coupled LFR-S-CO2 plant. The relative merits of the different heat exchanger configurations are revealed by the analysis which provides a basis to select the most promising concepts for further development.


Sign in / Sign up

Export Citation Format

Share Document