Internal flow dynamics of spill-return pressure-swirl atomizers

2021 ◽  
Vol 120 ◽  
pp. 110210 ◽  
Author(s):  
Milan Maly ◽  
Ondrej Cejpek ◽  
Marcel Sapik ◽  
Vladimir Ondracek ◽  
Graham Wigley ◽  
...  
Author(s):  
Ahmadreza Abbasi Baharanchi ◽  
Seckin Gokaltun ◽  
Shahla Eshraghi

VOF Multiphase model is used to simulate the flow inside a pressure-swirl-atomizer. The capability of the Reynolds Stress Model and variants of the K-ε and K-ω models in modeling of turbulence has been investigated in the commercial computational fluid dynamics (CFD) software FLUENT 6.3. The Implicit scheme available in the volume-of-fluid (VOF) model is used to calculate the interface representation between phases. The atomization characteristics have been investigated as well as the influence of the inlet swirl strength of the internal flow. The numerical results have been successfully validated against experimental data available for the computed parameters. The performance of the RNG K-ε model was found to be satisfactory in reducing the computational cost and introducing an effective Weber number for the flow simulated in this study.


Author(s):  
D. Donjat ◽  
J. L. Estivalezes ◽  
M. Michau

The context of the present work is an investigation of the influence of geometry on the structure of the pressure swirl atomizer internal flow. Vizualisations and measurements techniques (LDA and PIV) are used on a large-scale pressure swirl atomizer. The behaviour of inlets jets and the development of the swirling flow are studied. Measurements of the aircore/liquid interface instabilities revealed the fundamental influence of inlet slots and exit orifice. Finally, a comparison between experimental results and a 2D numerical simulation is presented.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Milan Maly ◽  
Jaroslav Slama ◽  
Ondřej Cejpek ◽  
Jan Jedelský

2019 ◽  
Vol 213 ◽  
pp. 02055
Author(s):  
Milan Maly ◽  
Jaroslav Slama ◽  
Marcel Sapik ◽  
Jan Jedelsky

This paper compares 2D axisymmetric and 3D numerical models used to predict the internal flow of a pressure-swirl atomizer using a commercial software Ansys Fluent 18.1. The computed results are compared with experimental data in terms of spray cone angle (SCA), discharge coefficient (CD), internal air-core dimensions and swirl velocity profile. The swirl velocity was experimentally studied using a Laser Doppler Anemometry in a scaled transparent model of the atomizer. The internal air-core was visualized at high temporal and spatial resolution by a high-speed camera with backlit illumination. The internal flow was numerically treated as transient two-phase flow. The gas-liquid interface was captured with Volume of Fluid scheme. The numerical solver used both laminar and turbulent approach. Turbulence was modelled using k-ε, k-ω, Reynolds Stress model (RSM) and coarse Large Eddy Simulation (LES). The laminar solver was capable to predict all the parameters with an error less than 5% compared with the experimental results in both 2D and 3D simulation. However, it overpredicted the velocity of the discharged liquid sheet. The LES model performed similarly to the laminar solver, but the liquid sheet velocity was 10% lower. The two-equation models k-ε and k-ω overpredicted the turbulence viscosity and the internal air-core was not predicted.


2007 ◽  
Vol 129 (4) ◽  
pp. 945-953 ◽  
Author(s):  
Ashraf A. Ibrahim ◽  
Milind A. Jog

Predictions of breakup length of a liquid sheet emanating from a pressure-swirl (simplex) fuel atomizer have been carried out by computationally modeling the two-phase flow in the atomizer coupled with a nonlinear analysis of instability of the liquid sheet. The volume-of-fluid (VOF) method has been employed to study the flow field inside the pressure-swirl atomizer. A nonlinear instability model has been developed using a perturbation expansion technique with the initial amplitude of the disturbance as the perturbation parameter to determine the sheet instability and breakup. The results for sheet thickness and velocities from the internal flow solutions are used as input in the nonlinear instability model. Computational results for internal flow are validated by comparing film thickness at exit, spray angle, and discharge coefficient with available experimental data. The predictions of breakup length show a good agreement with semiempirical correlations and available experimental measurements. The effect of elevated ambient pressure on the atomizer internal flow field and sheet breakup is investigated. A decrease in air core diameter is obtained at higher ambient pressure due to increased liquid-air momentum transport. Shorter breakup lengths are obtained at elevated air pressure. The coupled internal flow simulation and sheet instability analysis provides a comprehensive approach to modeling sheet breakup from a pressure-swirl atomizer.


Sign in / Sign up

Export Citation Format

Share Document