Inter-scale interaction in pipe flows at high Reynolds numbers

Author(s):  
Xiaobo Zheng ◽  
Gabriele Bellani ◽  
Lucia Mascotelli ◽  
Ramis Örlü ◽  
Andrea Ianiro ◽  
...  
2007 ◽  
Vol 29 (3) ◽  
pp. 385-396
Author(s):  
Khanh Le Chau

A variational principle for channel and pipe flows of incompressible viscous fluid is proposed. For low Reynolds numbers this variational principle reduces to the principle of minimum dissipation. For high Reynolds numbers it enables one to calculate the velocity profiles and the corresponding friction factors with reasonably good accuracy.


2013 ◽  
Vol 91 (1) ◽  
pp. 105-137 ◽  
Author(s):  
J. L. G. Oliveira ◽  
C. W. M. van der Geld ◽  
J. G. M. Kuerten

This theoretical study is motivated by the experimental observations ( a ) on the thickening of a turbulent boundary layer compared with its laminar counterpart, ( b ) on the erupting tongue of fluid that forms the leading edge of a turbulent spot in a boundary layer, ( c ) on the wall-layer and mid-flow scales, and ( d ) on the slugs of vorticity that occur in the middle of turbulent channel and pipe flows. It appears that no previous rational explanation has been put forward for these experimental observations. The present tentative suggestions for ( a ), ( b ) and ( d ) centre on the existence of small-deficit fast-travelling zones of concentrated vorticity governed by the nonlinear Euler equations to leading order at high Reynolds numbers Re but crucially influenced by viscosity nevertheless. In the boundary-layer case these zones travel outside the original boundary layer and hence act to increase the effective boundary-layer thickness. The structure of such zones and their scales, governing equations and amplitude dependence are discussed for assumed planar boundary layers and channel flows and for three-dimensional pipe flows in turn. Allied with this, the theory addresses the closure of the amplitude-dependent neutral curve at high Reynolds numbers, the connection with other Euler-type flows and the possibility of delay in sublayer bursting, as well as aiming to give some guidance on nonlinear aspects of unsteady two- and three-dimensional computations for Euler and related flows. The aspects in ( c ) above, concerning the turbulent scales both of the thin wall layer ( O ( Re -1 In Re ), from a renormalizing and scale-cascade argument) and of the thicker mid-flow zone (containing the Kolmogorov microscale O ( Re -3/4 )) which lies between that layer and the extensive small-deficit outer zone, are also discussed tentatively in terms of their dynamics, leading to apparently good agreement with turbulent-flow experiments and empirical models, for those scales. Other qualitative comparisons are presented.


2012 ◽  
Vol 43 (5) ◽  
pp. 589-613
Author(s):  
Vyacheslav Antonovich Bashkin ◽  
Ivan Vladimirovich Egorov ◽  
Ivan Valeryevich Ezhov ◽  
Sergey Vladimirovich Utyuzhnikov

AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 1062-1071 ◽  
Author(s):  
A. Seifert ◽  
L. G. Pack

AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 825-834
Author(s):  
F. Novak ◽  
T. Sarpkaya

2004 ◽  
Author(s):  
William L. Keith ◽  
Kimberly M. Cipolla ◽  
David R. Hart ◽  
Deborah A. Furey

Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


Sign in / Sign up

Export Citation Format

Share Document