Neurodevelopmental toxicity of alumina nanoparticles to zebrafish larvae: Toxic effects of particle sizes and ions

2021 ◽  
pp. 112587
Author(s):  
Rong Fan ◽  
Jin Chen ◽  
Xiaocheng Gao ◽  
Qinli Zhang
2015 ◽  
Vol 32 (1) ◽  
pp. 7-16 ◽  
Author(s):  
Yongmei Fan ◽  
Qing Feng ◽  
Kehua Lai ◽  
Weikang Huang ◽  
Chenghui Zhang ◽  
...  

Chemosphere ◽  
2021 ◽  
Vol 265 ◽  
pp. 129116
Author(s):  
Yilong Zou ◽  
Yongming Wu ◽  
Qiyu Wang ◽  
Jinbao Wan ◽  
Mi Deng ◽  
...  

2011 ◽  
Vol 205 ◽  
pp. S41-S42
Author(s):  
S. Rainieri ◽  
M. Olasagasti ◽  
S. Cuello ◽  
J. Sanz ◽  
C. Cámara ◽  
...  

2016 ◽  
Vol 42 (1) ◽  
pp. 27-33
Author(s):  
Eunhye Jo ◽  
Gyun-Baek Seo ◽  
Hyunmi Kim ◽  
Kyunghee Choi ◽  
Jung-Taek Kwon ◽  
...  

2020 ◽  
Vol 219 ◽  
pp. 105384
Author(s):  
Caroline Arcanjo ◽  
Christelle Adam-Guillermin ◽  
Sophia Murat El Houdigui ◽  
Giovanna Loro ◽  
Claire Della-Vedova ◽  
...  

Author(s):  
Lola Virág Kiss ◽  
Zoltán Sávoly ◽  
András Ács ◽  
Anikó Seres ◽  
Péter István Nagy

AbstractTo better understand the nanosize-relevant toxic effects and underlying mechanisms, N-acetylcysteine (NAC), as a mitigation agent, an ionic form of Zn (ZnCl2), and the binary mixture of ZnO with different particle sizes (15 nm and 140 nm), was used in toxicity assays with the nematode Panagrellus redivivus. The ZnCl2 concentrations were applied to show the amount of dissolved Zn ions present in the test system. Reactive oxygen species (ROS) measuring method was developed to fit the used test system. Our studies have shown that NAC can mitigate the toxic effects of both studied particle sizes. In the applied concentrations, ZnCl2 was less toxic than both of the ZnO particles. This finding indicates that not only ions and ROS produced by the dissolution are behind the toxic effects of the ZnO NPs, but also other particle size-dependent toxic effects, like the spontaneous ROS generation, are also relevant. When the two materials were applied in binary mixtures, the toxic effects increased significantly, and the dissolved zinc content and the ROS generation also increased. It is assumed that the chemical and physical properties of the materials have been mutually reinforcing to form a more reactive mixture that is more toxic to the P. redivivus test organism. Our findings demonstrate the importance of using mitigation agent and mixtures to evaluate the size-dependent toxicity of the ZnO. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document