Evolutionary history of the Eurasian steppe plant Schivereckia podolica (Brassicaceae) and its close relatives

Flora ◽  
2020 ◽  
Vol 268 ◽  
pp. 151602 ◽  
Author(s):  
Nikolai Friesen ◽  
Anže Zerdoner Calasan ◽  
Barbara Neuffer ◽  
Dmitry A. German ◽  
Michael Markov ◽  
...  
2019 ◽  
Vol 139 ◽  
pp. 106572 ◽  
Author(s):  
Eliška Záveská ◽  
Clemens Maylandt ◽  
Ovidiu Paun ◽  
Clara Bertel ◽  
Božo Frajman ◽  
...  

2021 ◽  
Vol 288 (1943) ◽  
pp. 20202934
Author(s):  
Jiaming Hu ◽  
Michael V. Westbury ◽  
Junxia Yuan ◽  
Zhen Zhang ◽  
Shungang Chen ◽  
...  

Cave hyenas (genus Crocuta ) are extinct bone-cracking carnivores from the family Hyaenidae and are generally split into two taxa that correspond to a European/Eurasian and an (East) Asian lineage. They are close relatives of the extant African spotted hyenas, the only extant member of the genus Crocuta . Cave hyenas inhabited a wide range across Eurasia during the Pleistocene, but became extinct at the end of the Late Pleistocene. Using genetic and genomic datasets, previous studies have proposed different scenarios about the evolutionary history of Crocuta. However, causes of the extinction of cave hyenas are widely speculative and samples from China are severely understudied. In this study, we assembled near-complete mitochondrial genomes from two cave hyenas from northeastern China dating to 20 240 and 20 253 calBP, representing the youngest directly dated fossils of Crocuta in Asia. Phylogenetic analyses suggest a monophyletic clade of these two samples within a deeply diverging mitochondrial haplogroup of Crocuta . Bayesian analyses suggest that the split of this Asian cave hyena mitochondrial lineage from their European and African relatives occurred approximately 1.85 Ma (95% CI 1.62–2.09 Ma), which is broadly concordant with the earliest Eurasian Crocuta fossil dating to approximately 2 Ma. Comparisons of mean genetic distance indicate that cave hyenas harboured higher genetic diversity than extant spotted hyenas, brown hyenas and aardwolves, but this is probably at least partially due to the fact that their mitochondrial lineages do not represent a monophyletic group, although this is also true for extant spotted hyenas. Moreover, the joint female effective population size of Crocuta (both cave hyenas and extant spotted hyenas) has sustained two declines during the Late Pleistocene. Combining this mitochondrial phylogeny, previous nuclear findings and fossil records, we discuss the possible relationship of fossil Crocuta in China and the extinction of cave hyenas.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 378 ◽  
Author(s):  
Eric Salomaki ◽  
Martin Kolisko

The phylum Apicomplexa (Alveolates) comprises a group of host-associated protists, predominately intracellular parasites, including devastating parasites like Plasmodium falciparum, the causative agent of malaria. One of the more fascinating characteristics of Apicomplexa is their highly reduced (and occasionally lost) remnant plastid, termed the apicoplast. Four core metabolic pathways are retained in the apicoplast: heme synthesis, iron–sulfur cluster synthesis, isoprenoid synthesis, and fatty acid synthesis. It has been suggested that one or more of these pathways are essential for plastid and plastid genome retention. The past decade has witnessed the discovery of several apicomplexan relatives, and next-generation sequencing efforts are revealing that they retain variable plastid metabolic capacities. These data are providing clues about the core genes and pathways of reduced plastids, while at the same time further confounding our view on the evolutionary history of the apicoplast. Here, we examine the evolutionary history of the apicoplast, explore plastid metabolism in Apicomplexa and their close relatives, and propose that the differences among reduced plastids result from a game of endosymbiotic roulette. Continued exploration of the Apicomplexa and their relatives is sure to provide new insights into the evolution of the apicoplast and apicomplexans as a whole.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


Sign in / Sign up

Export Citation Format

Share Document