Partition coefficients of organic molecules in squalane and water/ethanol mixtures by molecular dynamics simulations

2011 ◽  
Vol 306 (2) ◽  
pp. 162-170 ◽  
Author(s):  
Rasmus Lundsgaard ◽  
Georgios M. Kontogeorgis ◽  
Ioannis G. Economou
Langmuir ◽  
2013 ◽  
Vol 29 (11) ◽  
pp. 3527-3537 ◽  
Author(s):  
Thomas Ingram ◽  
Sandra Storm ◽  
Linda Kloss ◽  
Tanja Mehling ◽  
Sven Jakobtorweihen ◽  
...  

1995 ◽  
Vol 408 ◽  
Author(s):  
François Gygi

AbstractWe present results of ab-initio electronic structure calculations and molecular dynamics simulations of organic molecules carried out using adaptive curvilinear coordinates, within the local density approximation of density functional theory. This approach allows for an accurate treatment of first-row elements, which makes it particularly suitable for investigations of organic compounds. A recent formulation of this method relies on a real-space approach which combines the advantages of finite-difference methods with the accuracy of adaptive coordinates, and is well suited for implementation on massively parallel computers. We used molecular dynamics simulations to obtain the fully relaxed structures of nitrosyl fluoride (FNO), and of the aromatic heterocycles furan and pyrrole. The equilibrium geometries obtained show excellent agreement with experimental data. The harmonic vibrational frequencies of furan and pyrrole were calculated by diagonalization of their dynamical matrix and are found to agree with experimental data within an rms error of 25 cm-1 and 28 cm-1 for furan and pyrrole respectively. This accuracy is comparable to that attained for smaller organic molecules using elaborate quantum chemistry methods.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3614
Author(s):  
Abayomi S. Faponle ◽  
Anupom Roy ◽  
Ayodeji A. Adelegan ◽  
James W. Gauld

Cytochrome P450s (P450) are important enzymes in biology with useful biochemical reactions in, for instance, drug and xenobiotics metabolisms, biotechnology, and health. Recently, the crystal structure of a new member of the CYP116B family has been resolved. This enzyme is a cytochrome P450 (CYP116B46) from Tepidiphilus thermophilus (P450-TT) and has potential for the oxy-functionalization of organic molecules such as fatty acids, terpenes, steroids, and statins. However, it was thought that the opening to its hitherto identified substrate channel was too small to allow organic molecules to enter. To investigate this, we performed molecular dynamics simulations on the enzyme. The results suggest that the crystal structure is not relaxed, possibly due to crystal packing effects, and that its tunnel structure is constrained. In addition, the simulations revealed two key amino acid residues at the mouth of the channel; a glutamyl and an arginyl. The glutamyl’s side chain tightens and relaxes the opening to the channel in conjunction with the arginyl’s, though the latter’s side chain is less dramatically changed after the initial relaxation of its conformations. Additionally, it was observed that the effect of increased temperature did not considerably affect the dynamics of the enzyme fold, including the relative solvent accessibility of the amino acid residues that make up the substrate channel wall even as compared to the changes that occurred at room temperature. Interestingly, the substrate channel became distinguishable as a prominent tunnel that is likely to accommodate small- to medium-sized organic molecules for bioconversions. That is, P450-TT has the ability to pass appropriate organic substrates to its active site through its elaborate substrate channel, and notably, is able to control or gate any molecules at the opening to this channel.


Sign in / Sign up

Export Citation Format

Share Document