PρT and liquid-gas phase transition properties (PS,ρS,TS) of binary n-hexane + methyl octanoate mixture near the critical point of pure n-hexane

2022 ◽  
pp. 113382
Author(s):  
Suleiman M. Rasulov ◽  
Isa A. Isaev ◽  
Marzena Dzida ◽  
Ilmutdin M. Abdulagatov
2013 ◽  
Vol 16 (2) ◽  
pp. 23604 ◽  
Author(s):  
Yukhnovskii ◽  
Kolomiets ◽  
Idzyk

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
A. Liam Fitzpatrick ◽  
Emanuel Katz ◽  
Matthew T. Walters ◽  
Yuan Xin

Abstract We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar superfield with a ℤ2-symmetric cubic superpotential, aka the 2d Wess-Zumino model. The theory depends on a single dimensionless coupling $$ \overline{g} $$ g ¯ , and is expected to have a critical point at a tuned value $$ {\overline{g}}_{\ast } $$ g ¯ ∗ where it flows in the IR to the Tricritical Ising Model (TIM); the theory spontaneously breaks the ℤ2 symmetry on one side of this phase transition, and breaks SUSY on the other side. We calculate the spectrum of energies as a function of $$ \overline{g} $$ g ¯ and see the gap close as the critical point is approached, and numerically read off the critical exponent ν in TIM. Beyond the critical point, the gap remains nearly zero, in agreement with the expectation of a massless Goldstino. We also study spectral functions of local operators on both sides of the phase transition and compare to analytic predictions where possible. In particular, we use the Zamolodchikov C-function to map the entire phase diagram of the theory. Crucial to this analysis is the fact that our truncation is able to preserve supersymmetry sufficiently to avoid any additional fine tuning.


2001 ◽  
Vol 123 (4) ◽  
pp. 811-818 ◽  
Author(s):  
Jun Ishimoto ◽  
Mamoru Oike ◽  
Kenjiro Kamijo

The two-dimensional characteristics of the vapor-liquid two-phase flow of liquid helium in a pipe are numerically investigated to realize the further development and high performance of new cryogenic engineering applications. First, the governing equations of the two-phase flow of liquid helium based on the unsteady thermal nonequilibrium multi-fluid model are presented and several flow characteristics are numerically calculated, taking into account the effect of superfluidity. Based on the numerical results, the two-dimensional structure of the two-phase flow of liquid helium is shown in detail, and it is also found that the phase transition of the normal fluid to the superfluid and the generation of superfluid counterflow against normal fluid flow are conspicuous in the large gas phase volume fraction region where the liquid to gas phase change actively occurs. Furthermore, it is clarified that the mechanism of the He I to He II phase transition caused by the temperature decrease is due to the deprivation of latent heat for vaporization from the liquid phase. According to these theoretical results, the fundamental characteristics of the cryogenic two-phase flow are predicted. The numerical results obtained should contribute to the realization of advanced cryogenic industrial applications.


1996 ◽  
Vol 105 (5) ◽  
pp. 2020-2027 ◽  
Author(s):  
Lidia Strigari ◽  
Mauro Rovere ◽  
Bruno D’Aguanno

2020 ◽  
Vol 13 ◽  
pp. 10
Author(s):  
Dennis Bonatsos ◽  
D. Lenis ◽  
N. Minkov ◽  
D. Petrellis ◽  
P. P. Raychev ◽  
...  

Davidson potentials of the form β^2 + β0^4/β^2, when used in the original Bohr Hamiltonian for γ-independent potentials bridge the U(5) and 0(6) symmetries. Using a variational procedure, we determine for each value of angular momentum L the value of β0 at which the derivative of the energy ratio RL = E(L)/E(2) with respect to β0 has a sharp maximum, the collection of RL values at these points forming a band which practically coincides with the ground state band of the E(5) model, corresponding to the critical point in the shape phase transition from U(5) to Ο(6). The same potentials, when used in the Bohr Hamiltonian after separating variables as in the X(5) model, bridge the U(5) and SU(3) symmetries, the same variational procedure leading to a band which practically coincides with the ground state band of the X(5) model, corresponding to the critical point of the U(5) to SU(3) shape phase transition. A new derivation of the Holmberg-Lipas formula for nuclear energy spectra is obtained as a by-product.


Sign in / Sign up

Export Citation Format

Share Document