zumino model
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 10)

H-INDEX

20
(FIVE YEARS 0)

2022 ◽  
Vol 105 (2) ◽  
Author(s):  
J. A. Gracey
Keyword(s):  


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
James Brister ◽  
Zheng Sun ◽  
Greg Yang

Abstract It is known in previous literature that if a Wess-Zumino model with an R-symmetry gives a supersymmetric vacuum, the superpotential vanishes at the vacuum. In this work, we establish a formal notion of genericity, and show that if the R-symmetric superpotential has generic coefficients, the superpotential vanishes term-by-term at a supersymmetric vacuum. This result constrains the form of the superpotential which leads to a supersymmetric vacuum. It may contribute to a refined classification of R-symmetric Wess-Zumino models, and find applications in string constructions of vacua with small superpotentials. A similar result for a scalar potential system with a scaling symmetry is discussed.



2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Chiung Hwang ◽  
Shlomo Razamat ◽  
Evyatar Sabag ◽  
Matteo Sacchi

We consider compactifications of rank \boldsymbol{Q}𝐐 E-string theory on a genus zero surface with no punctures but with flux for various subgroups of the \boldsymbol{\mathrm{E}_8\times \mathrm{SU}(2)}E8×SU(2) global symmetry group of the six dimensional theory. We first construct a simple Wess–Zumino model in four dimensions corresponding to the compactification on a sphere with one puncture and a particular value of flux, the cap model. Using this theory and theories corresponding to two punctured spheres with flux, one can obtain a large number of models corresponding to spheres with a variety of fluxes. These models exhibit interesting IR enhancements of global symmetry as well as duality properties. As an example we will show that constructing sphere models associated to specific fluxes related by an action of the Weyl group of \boldsymbol{\mathrm{E}_8}E8 leads to the S-confinement duality of the \boldsymbol{\mathrm{USp}(2Q)}USp(2𝐐) gauge theory with six fundamentals and a traceless antisymmetric field. Finally, we show that the theories we discuss possess an \boldsymbol{\mathrm{SU}(2)_{\text{ISO}}}SU(2)ISO symmetry in four dimensions that can be naturally identified with the isometry of the two-sphere. We give evidence in favor of this identification by computing the `t Hooft anomalies of the \boldsymbol{\mathrm{SU}(2)_{\text{ISO}}}SU(2)ISO in 4d and comparing them with the predicted anomalies from 6d.



Author(s):  
Marc P. Bellon ◽  
◽  
Enrico I. Russo ◽  
◽  
◽  
...  

Building on our recent derivation of the Ward-Schwinger-Dyson equations for the cubic interaction model, we present here the first steps of their resurgent analysis. In our derivation of the WSD equations, we made sure that they had the properties of compatibility with the renormalisation group equations and independence from a regularisation procedure which was known to allow for the comparable studies in the Wess-Zumino model. The interactions between the transseries terms for the anomalous dimensions of the field and the vertex is at the origin of unexpected features, for which the effect of higher order corrections is not precisely known at this stage: we are only at the beginning of the journey to use resurgent methods to decipher non-perturbative effects in quantum field theory.



Author(s):  
A. Alonso-Izquierdo ◽  
M.A. González León ◽  
J. Martín Vaquero ◽  
M. de la Torre Mayado
Keyword(s):  


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Aleix Gimenez-Grau ◽  
Pedro Liendo ◽  
Philine van Vliet

Abstract Boundaries in three-dimensional $$ \mathcal{N} $$ N = 2 superconformal theories may preserve one half of the original bulk supersymmetry. There are two possibilities which are characterized by the chirality of the leftover supercharges. Depending on the choice, the remaining 2d boundary algebra exhibits $$ \mathcal{N} $$ N = (0, 2) or $$ \mathcal{N} $$ N = (1) supersymmetry. In this work we focus on correlation functions of chiral fields for both types of supersymmetric boundaries. We study a host of correlators using superspace techniques and calculate superconformal blocks for two- and three-point functions. For $$ \mathcal{N} $$ N = (1) supersymmetry, some of our results can be analytically continued in the spacetime dimension while keeping the codimension fixed. This opens the door for a bootstrap analysis of the ϵ-expansion in supersymmetric BCFTs. Armed with our analytically-continued superblocks, we prove that in the free theory limit two-point functions of chiral (and antichiral) fields are unique. The first order correction, which already describes interactions, is universal up to two free parameters. As a check of our analysis, we study the Wess-Zumino model with a super-symmetric boundary using Feynman diagrams, and find perfect agreement between the perturbative and bootstrap results.



2021 ◽  
Vol 36 (11) ◽  
pp. 2150076
Author(s):  
Giorgos Eleftheriou ◽  
Peter West

We briefly recall the procedure for computing the Ward identities in the presence of a regulator which violates the symmetry being considered. We compute the first nontrivial correction to the supersymmetry Ward identity of the Wess–Zumino model in the presence of background supergravity using dimensional regularization. We find that the result can be removed using a finite local counter term and so there is no supersymmetry anomaly.



2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Georgios Katsianis ◽  
Ioannis Papadimitriou ◽  
Kostas Skenderis ◽  
Marika Taylor

Abstract We present a comprehensive analysis of supersymmetry anomalies in the free and massless Wess-Zumino (WZ) model in perturbation theory. At the classical level the model possesses $$ \mathcal{N} $$ N = 1 superconformal symmetry, which is partially broken by quantum anomalies. The form of the anomalies and the part of the symmetry they break depend on the multiplet of conserved currents used. It was previously shown that the R-symmetry anomaly of the conformal current multiplet induces an anomaly in Q-supersymmetry, which appears first in 4-point functions. Here we confirm this result by an explicit 1-loop computation using a supersymmetric Pauli-Villars regulator.The conformal current multiplet does not exist in the regulated theory because the regulator breaks conformal invariance, R-symmetry and S-supersymmetry explicitly. The minimal massive multiplet is the Ferrara-Zumino (FZ) one and the supersymmetry preserved by the regulator is a specific field dependent combination of Q- and S- supersymmetry of the conformal multiplet. While this supersymmetry is non anomalous, conformal invariance, R-symmetry and the original Q- and S-supersymmetries are explicitly broken by finite contact terms, both in the regulated and renormalized theories.A conformal current multiplet does exist for the renormalized theory and may be obtained from the FZ multiplet by a set of finite local counterterms that eliminate the explicit symmetry breaking, thus restoring superconformal invariance up to anomalies. However, this necessarily renders both Q- and S-supersymmetries anomalous, as is manifest starting at 4-point functions of conformal multiplet currents. The paper contains a detailed discussion of a number of issues and subtleties related to Ward identities that may be useful in a wider context.



2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
A. Liam Fitzpatrick ◽  
Emanuel Katz ◽  
Matthew T. Walters ◽  
Yuan Xin

Abstract We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar superfield with a ℤ2-symmetric cubic superpotential, aka the 2d Wess-Zumino model. The theory depends on a single dimensionless coupling $$ \overline{g} $$ g ¯ , and is expected to have a critical point at a tuned value $$ {\overline{g}}_{\ast } $$ g ¯ ∗ where it flows in the IR to the Tricritical Ising Model (TIM); the theory spontaneously breaks the ℤ2 symmetry on one side of this phase transition, and breaks SUSY on the other side. We calculate the spectrum of energies as a function of $$ \overline{g} $$ g ¯ and see the gap close as the critical point is approached, and numerically read off the critical exponent ν in TIM. Beyond the critical point, the gap remains nearly zero, in agreement with the expectation of a massless Goldstino. We also study spectral functions of local operators on both sides of the phase transition and compare to analytic predictions where possible. In particular, we use the Zamolodchikov C-function to map the entire phase diagram of the theory. Crucial to this analysis is the fact that our truncation is able to preserve supersymmetry sufficiently to avoid any additional fine tuning.



2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Adar Sharon ◽  
Masataka Watanabe

Abstract We study the transition between phases at large R-charge on a conformal manifold. These phases are characterized by the behaviour of the lowest operator dimension ∆(QR) for fixed and large R-charge QR. We focus, as an example, on the D = 3, $$ \mathcal{N} $$ N = 2 Wess-Zumino model with cubic superpotential $$ W= XYZ+\frac{\tau }{6}\left({X}^3+{Y}^3+{Z}^3\right) $$ W = XYZ + τ 6 X 3 + Y 3 + Z 3 , and compute ∆(QR, τ) using the ϵ-expansion in three interesting limits. In two of these limits the (leading order) result turns out to be$$ \Delta \left({Q}_{R,\tau}\right)=\left\{\begin{array}{ll}\left(\mathrm{BPS}\;\mathrm{bound}\right)\left[1+O\left(\epsilon {\left|\tau \right|}^2{Q}_R\right)\right],& {Q}_R\ll \left\{\frac{1}{\epsilon },\kern0.5em \frac{1}{\epsilon {\left|\tau \right|}^2}\right\}\\ {}\frac{9}{8}{\left(\frac{\epsilon {\left|\tau \right|}^2}{2+{\left|\tau \right|}^2}\right)}^{\frac{1}{D-1}}{Q}_R^{\frac{D}{D-1}}\left[1+O\left({\left(\epsilon {\left|\tau \right|}^2{Q}_R\right)}^{-\frac{2}{D-1}}\right)\right],& {Q}_R\gg \left\{\begin{array}{ll}\frac{1}{\epsilon },& \frac{1}{\epsilon {\left|\tau \right|}^2}\end{array}\right\}\end{array}\right. $$ Δ Q R , τ = BPS bound 1 + O ϵ τ 2 Q R , Q R ≪ 1 ϵ 1 ϵ τ 2 9 8 ϵ τ 2 2 + τ 2 1 D − 1 Q R D D − 1 1 + O ϵ τ 2 Q R − 2 D − 1 , Q R ≫ 1 ϵ , 1 ϵ τ 2 which leads us to the double-scaling parameter, ϵ|τ|2QR, which interpolates between the “near-BPS phase” (∆(Q) ∼ Q) and the “superfluid phase” (∆(Q) ∼ QD/(D−1)) at large R-charge. This smooth transition, happening near τ = 0, is a large-R-charge manifestation of the existence of a moduli space and an infinite chiral ring at τ = 0. We also argue that this behavior can be extended to three dimensions with minimal modifications, and so we conclude that ∆(QR, τ) experiences a smooth transition around QR ∼ 1/|τ|2. Additionally, we find a first-order phase transition for ∆(QR, τ) as a function of τ, as a consequence of the duality of the model. We also comment on the applicability of our result down to small R-charge.



Sign in / Sign up

Export Citation Format

Share Document