Causal relations among starch hierarchical structure and physicochemical characteristics after repeated freezing-thawing

2022 ◽  
Vol 122 ◽  
pp. 107121 ◽  
Author(s):  
Hongwei Wang ◽  
Yan Wang ◽  
Ke Xu ◽  
Yanyan Zhang ◽  
Miaomiao Shi ◽  
...  
2018 ◽  
Vol 71 (12) ◽  
pp. 2643-2654 ◽  
Author(s):  
Lieke Heil ◽  
Johan Kwisthout ◽  
Stan van Pelt ◽  
Iris van Rooij ◽  
Harold Bekkering

Evidence is accumulating that our brains process incoming information using top-down predictions. If lower level representations are correctly predicted by higher level representations, this enhances processing. However, if they are incorrectly predicted, additional processing is required at higher levels to “explain away” prediction errors. Here, we explored the potential nature of the models generating such predictions. More specifically, we investigated whether a predictive processing model with a hierarchical structure and causal relations between its levels is able to account for the processing of agent-caused events. In Experiment 1, participants watched animated movies of “experienced” and “novice” bowlers. The results are in line with the idea that prediction errors at a lower level of the hierarchy (i.e., the outcome of how many pins fell down) slow down reporting of information at a higher level (i.e., which agent was throwing the ball). Experiments 2 and 3 suggest that this effect is specific to situations in which the predictor is causally related to the outcome. Overall, the study supports the idea that a hierarchical predictive processing model can account for the processing of observed action outcomes and that the predictions involved are specific to cases where action outcomes can be predicted based on causal knowledge.


Author(s):  
E. Baer

The most advanced macromolecular materials are found in plants and animals, and certainly the connective tissues in mammals are amongst the most advanced macromolecular composites known to mankind. The efficient use of collagen, a fibrous protein, in the design of both soft and hard connective tissues is worthy of comment. Very crudely, in bone collagen serves as a highly efficient binder for the inorganic hydroxyappatite which stiffens the structure. The interactions between the organic fiber of collagen and the inorganic material seem to occur at the nano (scale) level of organization. Epitatic crystallization of the inorganic phase on the fibers has been reported to give a highly anisotropic, stress responsive, structure. Soft connective tissues also have sophisticated oriented hierarchical structures. The collagen fibers are “glued” together by a highly hydrated gel-like proteoglycan matrix. One of the simplest structures of this type is tendon which functions primarily in uniaxial tension as a reinforced elastomeric cable between muscle and bone.


Author(s):  
Arezki Tagnit-Hamou ◽  
Shondeep L. Sarkar

All the desired properties of cement primarily depend on the physicochemical characteristics of clinker from which the cement is produced. The mineralogical composition of the clinker forms the most important parameter influencing these properties.Optical microscopy provides reasonably accurate information pertaining to the thermal history of the clinker, while XRDA still remains the proven method of phase identification, and bulk chemical composition of the clinker can be readily obtained from XRFA. Nevertheless, all these microanalytical techniques are somewhat limited in their applications, and SEM/EDXA combination fills this gap uniquely by virtue of its high resolution imaging capability and possibility of instantaneous chemical analysis of individual phases.Inhomogeneities and impurities in the raw meal, influence of kiln conditions such as sintering and cooling rate being directly related to the microstructure can be effectively determined by SEM/EDXA. In addition, several physical characteristics of cement, such as rhcology, grindability and hydraulicity also depend on the clinker microstructure.


2019 ◽  
Vol 64 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Elias S.J. Arnér

Abstract Selenocysteine (Sec), the sulfur-to-selenium substituted variant of cysteine (Cys), is the defining entity of selenoproteins. These are naturally expressed in many diverse organisms and constitute a unique class of proteins. As a result of the physicochemical characteristics of selenium when compared with sulfur, Sec is typically more reactive than Cys while participating in similar reactions, and there are also some qualitative differences in the reactivities between the two amino acids. This minireview discusses the types of modifications of Sec in selenoproteins that have thus far been experimentally validated. These modifications include direct covalent binding through the Se atom of Sec to other chalcogen atoms (S, O and Se) as present in redox active molecular motifs, derivatization of Sec via the direct covalent binding to non-chalcogen elements (Ni, Mb, N, Au and C), and the loss of Se from Sec resulting in formation of dehydroalanine. To understand the nature of these Sec modifications is crucial for an understanding of selenoprotein reactivities in biological, physiological and pathophysiological contexts.


1976 ◽  
Vol 31 (9) ◽  
pp. 671-673
Author(s):  
James Forest

1999 ◽  
Author(s):  
Craig N. Sawchuk ◽  
David F. Tolin ◽  
Suzanne A. Meunier ◽  
Scott O. Lilienfeld ◽  
Jeffrey M. Lohr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document