Autumn nutrient resorption and losses in four deciduous forest tree species

2006 ◽  
Vol 228 (1-3) ◽  
pp. 33-39 ◽  
Author(s):  
A. Hagen-Thorn ◽  
I. Varnagiryte ◽  
B. Nihlgård ◽  
K. Armolaitis
2021 ◽  
Vol 13 (14) ◽  
pp. 2716
Author(s):  
Kaijian Xu ◽  
Zhaoying Zhang ◽  
Wanwan Yu ◽  
Ping Zhao ◽  
Jibo Yue ◽  
...  

The distribution of forest tree species provides crucial data for regional forest management and ecological research. Although medium-high spatial resolution remote sensing images are widely used for dynamic monitoring of forest vegetation phenology and species identification, the use of multiresolution images for similar applications remains highly uncertain. Moreover, it is necessary to explore to what extent spectral variation is responsible for the discrepancies in the estimation of forest phenology and classification of various tree species when using up-scaled images. To clarify this situation, we studied the forest area in Harqin Banner in northeast China by using year-round multiple-resolution time-series images (at four spatial resolutions: 4, 10, 16, and 30 m) and eight phenological metrics of four deciduous forest tree species in 2018, to explore potential impacts of relevant results caused by various resolutions. We also investigated the effect of using up-scaled time-series images by comparing the corresponding results that use pixel-aggregation algorithms with the four spatial resolutions. The results indicate that both phenology and classification accuracy of the dominant forest tree species are markedly affected by the spatial resolution of time-series remote sensing data (p < 0.05): the spring phenology of four deciduous forest tree species first rises and then falls as the image resolution varies from 4 to 30 m; similarly, the accuracy of tree species classification increases as the image resolution varies from 4 to 10 m, and then decreases as the image resolution gradually falls to 30 m (p < 0.05). Therefore, there remains a profound discrepancy between the results obtained by up-scaled and actual remote sensing data at the given spatial resolutions (p < 0.05). The results also suggest that combining phenological metrics and time-series NDVI data can be applied to identify the regional dominant tree species across different spatial resolutions, which would help advance the use of multiscale time-series satellite data for forest resource management.


Biotropica ◽  
2007 ◽  
Vol 39 (5) ◽  
pp. 655-659 ◽  
Author(s):  
Alexandre B. Sampaio ◽  
Karen D. Holl ◽  
Aldicir Scariot

Plant Ecology ◽  
2021 ◽  
Author(s):  
Valéria Forni Martins ◽  
Rafaela Letícia Brito Bispo ◽  
Priscilla de Paula Loiola

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomohiro Fujita

AbstractThis study examined the mechanisms of facilitation and importance of seed dispersal during establishment of forest tree species in an Afrotropical woodland. Seedling survival of Syzygium guineense ssp. afromontanum was monitored for 2.5 years at four different microsites in savannah woodland in Malawi (southeastern Africa) under Ficus natalensis (a potential nurse plant), Brachystegia floribunda (a woodland tree), Uapaca kirkiana (a woodland tree), and at a treeless site. The number of naturally established forest tree seedlings in the woodland was also counted. Additionally, S. guineense ssp. afromontanum seed deposition was monitored at the four microsites. Insect damage (9% of the total cause of mortality) and trampling by ungulates (1%) had limited impact on seedling survival in this area. Fire (43%) was found to be the most important cause of seedling mortality and fire induced mortality was especially high under U. kirkiana (74%) and at treeless site (51%). The rate was comparatively low under F. natalensis (4%) and B. floribunda (23%), where fire is thought to be inhibited due to the lack of light-demanding C4 grasses. Consequently, seedling survival under F. natalensis and B. floribunda was higher compared with the other two microsites. The seedling survival rate was similar under F. natalensis (57%) and B. floribunda (59%). However, only a few S. guineense ssp. afromontanum seedlings naturally established under B. floribunda (25/285) whereas many seedlings established under F. natalensis (146/285). These findings indicate that the facilitative mechanism of fire suppression is not the only factor affecting establishment. The seed deposition investigation revealed that most of the seeds (85%) were deposited under F. natalensis. As such, these findings suggest that in addition to fire suppression, dispersal limitations also play a role in forest-savannah dynamics in this region, especially at the community level.


Sign in / Sign up

Export Citation Format

Share Document