scholarly journals The effect of salvage logging on surface fuel loads and fuel moisture in beetle-infested lodgepole pine forests

2017 ◽  
Vol 390 ◽  
pp. 80-88 ◽  
Author(s):  
Paul R. Hood ◽  
Kellen N. Nelson ◽  
Charles C. Rhoades ◽  
Daniel B. Tinker
2017 ◽  
Vol 26 (10) ◽  
pp. 852 ◽  
Author(s):  
Kellen N. Nelson ◽  
Monica G. Turner ◽  
William H. Romme ◽  
Daniel B. Tinker

Early-seral forests are expanding throughout western North America as fire frequency and annual area burned increase, yet fire behaviour in young postfire forests is poorly understood. We simulated fire behaviour in 24-year-old lodgepole pine (Pinus contorta var. latifolia) stands in Yellowstone National Park, Wyoming, United States using operational models parameterised with empirical fuel characteristics, 50–99% fuel moisture conditions, and 1–60kmhr−1 open winds to address two questions: [1] How does fireline intensity, and crown fire initiation and spread vary among young, lodgepole pine stands? [2] What are the contributions of fuels, moisture and wind on fire behaviour? Sensitivity analysis indicated the greatest contributors to output variance were stand structure mediated wind attenuation, shrub fuel loads and 1000-h fuel moisture for fireline intensity; crown base height for crown fire initiation; and crown bulk density and 1-h fuel moisture for crown fire spread. Simulation results predicted crown fire (e.g. passive, conditional or active types) in over 90% of stands at 50th percentile moisture conditions and wind speeds greater than 3kmhr−1. We conclude that dense canopy characteristics heighten crown fire potential in young, postfire lodgepole pine forests even under less than extreme wind and fuel moisture conditions.


Fire ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 34 ◽  
Author(s):  
Kevin Moriarty ◽  
Antony S. Cheng ◽  
Chad M. Hoffman ◽  
Stuart P. Cottrell ◽  
Martin E. Alexander

The recent mountain pine beetle outbreak affecting lodgepole pine forests in the Rocky Mountains has created a novel fire environment for wildland firefighters. This paper presents results from an examination of firefighters’ observations of fire behavior in post-outbreak lodgepole pine forests, with a focus on what they considered surprising from a fire behavior standpoint and how this in turn affected their suppression tactics. The surprises in fire behavior experienced by firefighters during the red phase of post-outbreak forests included an elevated level of fire spread and intensity under moderate weather and fuel moisture conditions, increased spotting, and faster surface-to-crown fire transitions with limited or no ladder fuels. Unexpectedly, during the gray phase in mountain pine beetle-attacked stands, crown ignition and crown fire propagation was observed for short periods of time. Firefighters are now more likely to expect to see active fire behavior in nearly all fire weather and fuel moisture conditions, not just under critically dry and windy situations, and across all mountain pine beetle attack phases, not just the red phase. Firefighters changed their suppression tactics by adopting indirect methods due to the potential fire behavior and tree-fall hazards associated with mountain pine beetle-attacked lodgepole pine forests.


2020 ◽  
Vol 472 ◽  
pp. 118251
Author(s):  
Bethany N. Avera ◽  
Charles C. Rhoades ◽  
Francisco Calderόn ◽  
M. Francesca Cotrufo

2016 ◽  
Vol 26 (8) ◽  
pp. 2424-2438 ◽  
Author(s):  
Kellen N. Nelson ◽  
Monica G. Turner ◽  
William H. Romme ◽  
Daniel B. Tinker

2018 ◽  
Vol 409 ◽  
pp. 84-93 ◽  
Author(s):  
Paula J. Fornwalt ◽  
Charles C. Rhoades ◽  
Robert M. Hubbard ◽  
Rebecca L. Harris ◽  
Akasha M. Faist ◽  
...  

2015 ◽  
Vol 61 (4) ◽  
pp. 689-702 ◽  
Author(s):  
Jennifer S. Briggs ◽  
Todd J. Hawbaker ◽  
Don Vandendriesche

2011 ◽  
Vol 81 (1) ◽  
pp. 3-24 ◽  
Author(s):  
Martin Simard ◽  
William H. Romme ◽  
Jacob M. Griffin ◽  
Monica G. Turner

2018 ◽  
Vol 29 (2) ◽  
pp. 213-225 ◽  
Author(s):  
Benoit Gendreau-Berthiaume ◽  
S. Ellen Macdonald ◽  
Jacob John Stadt

Sign in / Sign up

Export Citation Format

Share Document