Landscape variation in tree regeneration and snag fall drive fuel loads in 24-year old post-fire lodgepole pine forests

2016 ◽  
Vol 26 (8) ◽  
pp. 2424-2438 ◽  
Author(s):  
Kellen N. Nelson ◽  
Monica G. Turner ◽  
William H. Romme ◽  
Daniel B. Tinker
2020 ◽  
Vol 468 ◽  
pp. 118182 ◽  
Author(s):  
Charles C. Rhoades ◽  
Robert M. Hubbard ◽  
Kelly Elder ◽  
Paula J. Fornwalt ◽  
Elizabeth Schnackenberg ◽  
...  

2017 ◽  
Vol 390 ◽  
pp. 80-88 ◽  
Author(s):  
Paul R. Hood ◽  
Kellen N. Nelson ◽  
Charles C. Rhoades ◽  
Daniel B. Tinker

2019 ◽  
Vol 116 (23) ◽  
pp. 11319-11328 ◽  
Author(s):  
Monica G. Turner ◽  
Kristin H. Braziunas ◽  
Winslow D. Hansen ◽  
Brian J. Harvey

Subalpine forests in the northern Rocky Mountains have been resilient to stand-replacing fires that historically burned at 100- to 300-year intervals. Fire intervals are projected to decline drastically as climate warms, and forests that reburn before recovering from previous fire may lose their ability to rebound. We studied recent fires in Greater Yellowstone (Wyoming, United States) and asked whether short-interval (<30 years) stand-replacing fires can erode lodgepole pine (Pinus contortavar.latifolia) forest resilience via increased burn severity, reduced early postfire tree regeneration, reduced carbon stocks, and slower carbon recovery. During 2016, fires reburned young lodgepole pine forests that regenerated after wildfires in 1988 and 2000. During 2017, we sampled 0.25-ha plots in stand-replacing reburns (n= 18) and nearby young forests that did not reburn (n= 9). We also simulated stand development with and without reburns to assess carbon recovery trajectories. Nearly all prefire biomass was combusted (“crown fire plus”) in some reburns in which prefire trees were dense and small (≤4-cm basal diameter). Postfire tree seedling density was reduced sixfold relative to the previous (long-interval) fire, and high-density stands (>40,000 stems ha−1) were converted to sparse stands (<1,000 stems ha−1). In reburns, coarse wood biomass and aboveground carbon stocks were reduced by 65 and 62%, respectively, relative to areas that did not reburn. Increased carbon loss plus sparse tree regeneration delayed simulated carbon recovery by >150 years. Forests did not transition to nonforest, but extreme burn severity and reduced tree recovery foreshadow an erosion of forest resilience.


2018 ◽  
Vol 169 (5) ◽  
pp. 260-268 ◽  
Author(s):  
Thomas Wohlgemuth ◽  
Violette Doublet ◽  
Cynthia Nussbaumer ◽  
Linda Feichtinger ◽  
Andreas Rigling

Vegetation shift in Scots pine forests in the Valais accelerated by large disturbances In the past dozen years, several studies have concluded a vegetation shift from Scots pine to oak (pubescent and sessile) forests in the low elevated zones of the Valais. It is, however, not fully clear in which way such a vegetation shift actually occurs and on which processes such a shift would be based. Two studies, one on the tree demography in the intact Pfynwald and the other on the tree regeneration on the large Leuk forest fire patch, serve to discuss different aspects of the shift from Scots pine to oak. The forest stands of Pfynwald consist of 67% Scots pines and 14% oaks. Regenerating trees are 2–3.5 times more frequent in small gaps than under canopy. In gaps of the Upper Pfynwald, seedlings and saplings of Scots pine are three times more abundant than oaks, while both species regenerate in similar quantities under canopy. In the Lower Pfynwald, young oaks – especially seedlings – are more frequent than Scots pines. A different process is going on at the lower part in the Leuk forest fire patch where Scots pines prevailed before the burn of 2003. While Scots pines regenerate exclusively close to the edge of the intact forest, oaks not only resprout from trunk but also profit from unlimited spreading of their seeds by the Eurasian jay. Regeneration from seeds are hence observed in the whole studied area, independent of the proximity of seed trees. After the large fire disturbance, a mixed forests with a high share of oaks is establishing, which translates to a rapid vegetation shift. The two trajectories are discussed in the light of climate change.


2015 ◽  
Vol 61 (4) ◽  
pp. 689-702 ◽  
Author(s):  
Jennifer S. Briggs ◽  
Todd J. Hawbaker ◽  
Don Vandendriesche

2011 ◽  
Vol 81 (1) ◽  
pp. 3-24 ◽  
Author(s):  
Martin Simard ◽  
William H. Romme ◽  
Jacob M. Griffin ◽  
Monica G. Turner

2018 ◽  
Vol 29 (2) ◽  
pp. 213-225 ◽  
Author(s):  
Benoit Gendreau-Berthiaume ◽  
S. Ellen Macdonald ◽  
Jacob John Stadt

Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 536 ◽  
Author(s):  
Kristen Pelz ◽  
Charles Rhoades ◽  
Robert Hubbard ◽  
Frederick Smith

The severity of lodgepole pine mortality from mountain pine beetle outbreaks varies with host tree diameter, density, and other structural characteristics, influencing subcanopy conditions and tree regeneration. We measured density and leader growth of shade-intolerant lodgepole pine, shade-tolerant Engelmann spruce, and very shade-tolerant subalpine fir regeneration beneath stands that experienced moderate and high overstory lodgepole pine mortality (average 40% and 85% of total basal area) a decade earlier. Lodgepole comprised >90% of the overstory basal area and mature spruce and fir were present in both mortality levels, though live basal area and disturbance history differed. Post-beetle outbreak recruitment was high in both mortality levels, but there were more lodgepole in high than moderate mortality plots (1140 stems ha−1 vs. 60 stems ha−1) and more subalpine fir in moderate than high mortality plots (4690 stems ha−1 vs. 2870 stems ha−1). Pine advance regeneration, established prior to outbreak, was more dense in high mortality than moderate mortality sites (930 stems ha−1 vs. 310 stems ha−1), but the trend was generally the opposite for the other conifers. Lodgepole recruitment increased and subalpine fir decreased with greater forest floor light availability. All species grew faster in high mortality areas than their counterparts in moderate mortality areas. However, in high mortality areas pine grew faster than the more shade tolerant species, and in moderate mortality areas spruce and fir grew faster than pine. These species-specific responses to the degree of overstory mortality will influence future stand composition and rate of forest recovery after mountain pine beetle outbreaks.


Sign in / Sign up

Export Citation Format

Share Document