Regeneration response to canopy gap size in a Chinese pine plantation: Species diversity patterns, size structures and spatial distributions

2017 ◽  
Vol 397 ◽  
pp. 97-107 ◽  
Author(s):  
Zhibin Wang ◽  
Haijiao Yang ◽  
Boqian Dong ◽  
Mingming Zhou ◽  
Lvyi Ma ◽  
...  
Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 680 ◽  
Author(s):  
Xuan Yu ◽  
Lin Yang ◽  
Shixuan Fei ◽  
Zitong Ma ◽  
Ruqian Hao ◽  
...  

Gaps by thinning can have different microclimatic environments compared to surrounding areas, depending on the size of the gap. In addition, gaps can play important roles in biological dynamics, nutrient cycling, and seedling regeneration. The impacts of gap size on soil microbial communities and enzyme activities in different soil layers in Chinese pine plantations are not well understood. Here, we created gaps of 45 m2 (small, G1), 100 m2 (medium, G2), and 190 m2 (large, G3) by thinning unhealthy trees in an aged (i.e., 50 years old) monoculture Chinese pine plantation in 2010. Soil samples were collected in 2015. The total, bacterial, Gram-positive (G+), and Gram-negative (G−) phospholipid fatty acid (PLFA) profiles were highest in medium gaps in both the organic and mineral layers. These indicesdecreased sharply as gap size increased to 190 m2, and each of the detected enzyme activities demonstrated the same trend. Under all the gap size managements, abundances of microbial PLFAs and enzyme activities in the organic layers were higher than in the mineral layers. The soil layer was found to have a stronger influence on soil microbial communities than gap size. Redundancy analysis (RDA) based on the three systems with different gap sizes showed that undergrowth coverage, diversity, soil total nitrogen (TN), total organic carbon (TOC), and available phosphorus (AT) significantly affected soil microbial communities. Our findings highlighted that the effect of gap size on soil microenvironment is valuable information for assessing soil fertility. Medium gaps (i.e., 100 m2) have higher microbial PLFAs, enzyme activity, and soil nutrient availability. These medium gaps are considered favorable for soil microbial communities and fertility studied in a Chinese pine plantation managed on the Loess Plateau.


2017 ◽  
Vol 385 ◽  
pp. 46-56 ◽  
Author(s):  
Zhibin Wang ◽  
Haijiao Yang ◽  
Boqian Dong ◽  
Mingming Zhou ◽  
Lvyi Ma ◽  
...  

2013 ◽  
Vol 5 (11) ◽  
pp. 1466-1472 ◽  
Author(s):  
Boqian Dong ◽  
Lvyi Ma ◽  
Zhongkui Jia ◽  
Jie Duan

2012 ◽  
Vol 23 (2) ◽  
pp. 217-222 ◽  
Author(s):  
Kambiz Abrari Vajari ◽  
Hamid Jalilvand ◽  
Mohammad Reza Pourmajidian ◽  
Kambiz Espahbodi ◽  
Alireza Moshki

Ecology ◽  
2002 ◽  
Vol 83 (5) ◽  
pp. 1185-1198 ◽  
Author(s):  
Fangliang He ◽  
Pierre Legendre

2018 ◽  
Vol 48 (11) ◽  
pp. 1320-1330
Author(s):  
John W. Punches ◽  
Klaus J. Puettmann

The influence of adjacent canopy gaps on spatial distribution of epicormic branches and delayed foliage (originating from dormant buds) was investigated in 65-year-old coastal Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco). Sample trees were selected across a broad range of local densities (adjacent canopy gap sizes) from a repeatedly thinned stand in which gaps had been created 12 years prior to our study. Lengths and stem locations of original and epicormic branches were measured within the south-facing crown quadrant, along with extents to which branches were occupied by sequential (produced in association with terminal bud elongation) and (or) delayed foliage. Epicormic branches, while prevalent throughout crowns, contributed only 10% of total branch length and 2% of total foliage mass. In contrast, delayed foliage occupied over 75% of total branch length, accounted for nearly 39% of total foliage mass, and often overlapped with sequential foliage. Canopy gap size did not influence original or epicormic branch length or location. On original branches, larger gaps may have modestly negatively influenced the relative extent of sequential foliage on branches and (or) slightly positively influenced delayed foliage mass. Delayed foliage appears to contribute substantially to Douglas-fir crown maintenance at this tree age, but canopy gap size had a minor influence, at least in the short term.


2020 ◽  
Vol 47 (6) ◽  
pp. 1373-1382
Author(s):  
Hiroshi Ikeda ◽  
Mac A. Callaham ◽  
Richard P. Shefferson ◽  
Evelyn S. Wenk ◽  
Carlos Fragoso

2010 ◽  
Vol 26 (5) ◽  
pp. 521-531 ◽  
Author(s):  
David Laurencio ◽  
Lee A. Fitzgerald

Abstract:Disentangling local and historical factors that determine species diversity patterns at multiple spatial scales is fundamental to elucidating processes that govern ecological communities. Here we investigated how environmental correlates may influence diversity at local and regional scales. Primarily utilizing published species lists, amphibian and reptile alpha and beta diversity were assessed at 17 well-surveyed sites distributed among ecoregions throughout Costa Rica. The degree to which regional species diversity patterns were related to environmental variables and geographic distance was determined using Canonical Correspondence Analysis and Mantel tests. Amphibian alpha diversity was highest in lowland Pacific sites (mean = 43.3 species) and lowest at the high elevation site (9 species). Reptile alpha diversity values were high for both lowland Atlantic (mean = 69.5 species) and lowland Pacific (mean = 67 species) sites and lowest for the high elevation site (8 species). We found high species turnover between local sites and ecoregions, demonstrating the importance of beta diversity in the determination of regional diversity. For both amphibians and reptiles, beta diversity was highest between the high-elevation site and all others, and lowest among lowland sites within the same ecoregion. The effect of geographic distance on beta diversity was minor. Ecologically significant climatic variables related to rain, temperature, sunshine and insolation were found to be important determinants of local and regional diversity for both amphibians and reptiles in Costa Rica.


Sign in / Sign up

Export Citation Format

Share Document