Active meat packaging from thermoplastic cassava starch containing sappan and cinnamon herbal extracts via LLDPE blown-film extrusion

2020 ◽  
Vol 26 ◽  
pp. 100557 ◽  
Author(s):  
Aruchida Khumkomgool ◽  
Thanaporn Saneluksana ◽  
Nathdanai Harnkarnsujarit
2020 ◽  
Vol 24 ◽  
pp. 100480 ◽  
Author(s):  
Kedpraveen Huntrakul ◽  
Rangrong Yoksan ◽  
Amporn Sane ◽  
Nathdanai Harnkarnsujarit

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 242
Author(s):  
Pablo Bordón ◽  
Rubén Paz ◽  
Carolina Peñalva ◽  
Gisela Vega ◽  
Mario Monzón ◽  
...  

Bags used to protect and accelerate the ripening of bananas are a clear example of the environmental problem of packaging waste. Small pieces of these non-biodegradable bags are frequently disposed on the soil by accident (environmental conditions and poor handling during the harvest) and remain there for years. This work focuses on the development of protective biodegradable bags reinforced with banana fiber, obtained from waste of the banana plants, thus promoting a circular economy and a more environmentally friendly process. To achieve this, different bio-based composites were tested (processability) by compounding extrusion (biopolymer and banana fiber with different process steps) and blown film extrusion. The bags produced were tested in field and sequentially improved in three generations of biofilms. The results showed that the maximum processable fiber content was 5 wt %. Additionally, the micronizing of the compounds was crucial to simplify the blown film extrusion and improve the smoothness of the bags (scratches avoidance on the banana surface). The final bags (Mater-Bi biopolymer, 5% combed and sieved banana fiber, and 2.5 wt % TiO2 for ultraviolet light filtration), performed better than the conventional ones (faster maturing, i.e., earlier harvest, and easier handling) and fulfilled the biodegradability, composting and ecotoxicity test requirements.


2003 ◽  
Vol 43 (2) ◽  
pp. 398-418 ◽  
Author(s):  
J. Carl Pirkle ◽  
Richard D. Braatz

2008 ◽  
Vol 48 (8) ◽  
pp. 1487-1494 ◽  
Author(s):  
Giri Gururajan ◽  
H. Shan ◽  
G. Lickfield ◽  
A.A. Ogale

Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1925 ◽  
Author(s):  
Rattikarn Khankrua ◽  
Tanyawan Pongpanit ◽  
Ponchai Paneetjit ◽  
Rungnapha Boonmark ◽  
Manus Seadan ◽  
...  

Heat-shrinkable films have widely been used for various applications such as shrinkable labels and cap seals. These plastics have generally a short life. The biodegradable polymers can thus be an ideal candidate for such applications. This work aimed to study the stretching and shrinking ratio of poly(lactic acid)/ethylene vinyl acetate through reactive blends system for heat-shrinkable films application. The reactive agents, Joncryl® and Perkadox were used as in situ compatibilizers. PLA/EVA with 100/0, 97/3, 95/5, 93/7, and 90/10 ratios were prepared in the twin screw extruder. Neat PLA and PLA/EVA films were fabricated by blown film extrusion. The results revealed that the elongation at break of PLA in the TD direction was improved when adding EVA. PLA and EVA film with 0.1 phr of Perkadox was found to be sufficient as evident by FESEM micrograph and DMTA results. The films were stretched and shrunk at a temperature of 70 °C. The percentage of shrinkage of the stretched PLA/EVA reactive blend films, two and three times were, 100%, approximately. On the other hand, the four-times stretched films shrunk less than 100% because of the excessive stretching, which resulted in film breakage and defect.


2017 ◽  
Vol 873 ◽  
pp. 117-122
Author(s):  
Tarinee Nampitch ◽  
Thiti Kaisone ◽  
Pran Hanthanon ◽  
Chanon Wiphanurat ◽  
Sumate Ouipanich ◽  
...  

The present research aimed to develop biodegradable mulch films that could resolve the environmental problem in agriculture. The research also compared the properties of transparent and black commercial mulch films. Blended films were prepared by blown-film extrusion, heating at 170 °C, and rotation at 55 rpm. The results revealed that the appearance of FTIR spectra were shown as functional groups of PBAT, described at 1710 cm-1 and 1267 cm-1, which corresponds to carbonyl groups in ester linkage and C-O in ester linkage, respectively. The presence of O-H carboxylic acids, attributed within the range 910-950 cm-1. The films containing 10% PLA loading showed peaks from 937 to 1712 cm-1, more than films containing 20% PLA loading. The carbon black contained in the biodegradable film could interrupt the mobility of the polymer chain, leading to decreased Tm, while the incorporation of carbon black in biodegradable mulch films could increase the tensile properties of blends.


2017 ◽  
Vol 64 ◽  
pp. 277-286
Author(s):  
Karine Melro de Almeida ◽  
Ana Maria F. de Sousa ◽  
Fernando G. de Souza Junior ◽  
Luiz Carlos Bertolino ◽  
Marisa C.G. Rocha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document