A Proposed DNA Binding Activity of Mitochondrial Iron-sulfur Protein Miner2

2017 ◽  
Vol 112 ◽  
pp. 81
Author(s):  
Jing Yang ◽  
Huangen Ding
2019 ◽  
Vol 1866 (2) ◽  
pp. 240-251 ◽  
Author(s):  
Joseph J. Braymer ◽  
Martin Stümpfig ◽  
Stefanie Thelen ◽  
Ulrich Mühlenhoff ◽  
Roland Lill

2017 ◽  
Vol 3 (5) ◽  
pp. e184 ◽  
Author(s):  
Akihiko Ishiyama ◽  
Chika Sakai ◽  
Yuichi Matsushima ◽  
Satoru Noguchi ◽  
Satomi Mitsuhashi ◽  
...  

Objective:To determine the molecular factors contributing to progressive cavitating leukoencephalopathy (PCL) to help resolve the underlying genotype-phenotype associations in the mitochondrial iron-sulfur cluster (ISC) assembly system.Methods:The subjects were 3 patients from 2 families who showed no inconsistencies in either clinical or brain MRI findings as PCL. We used exome sequencing, immunoblotting, and enzyme activity assays to establish a molecular diagnosis and determine the roles of ISC-associated factors in PCL.Results:We performed genetic analyses on these 3 patients and identified compound heterozygosity for the IBA57 gene, which encodes the mitochondrial iron-sulfur protein assembly factor. Protein expression analysis revealed substantial decreases in IBA57 protein expression in myoblasts and fibroblasts. Immunoblotting revealed substantially reduced expression of SDHB, a subunit of complex II, and lipoic acid synthetase (LIAS). Levels of pyruvate dehydrogenase complex-E2 and α-ketoglutarate dehydrogenase-E2, which use lipoic acid as a cofactor, were also reduced. In activity staining, SDH activity was clearly reduced, but it was ameliorated in mitochondrial fractions from rescued myoblasts. In addition, NFU1 protein expression was also decreased, which is required for the assembly of a subset of iron-sulfur proteins to SDH and LIAS in the mitochondrial ISC assembly system.Conclusions:Defects in IBA57 essentially regulate NFU1 expression, and aberrant NFU1 ultimately affects SDH activity and LIAS expression in the ISC biogenesis pathway. This study provides new insights into the role of the iron-sulfur protein assembly system in disorders related to mitochondrial energy metabolism associated with leukoencephalopathy with cavities.


2020 ◽  
Vol 86 (18) ◽  
Author(s):  
Yaqing Cheng ◽  
Mengya Lyu ◽  
Renjun Yang ◽  
Ying Wen ◽  
Yuan Song ◽  
...  

ABSTRACT Iron-sulfur (Fe-S) clusters are ubiquitous and versatile inorganic cofactors that are crucial for many fundamental bioprocesses in nearly all organisms. How cells maintain Fe-S cluster homeostasis is not well understood in Gram-positive bacteria. Genomic analysis showed that the Suf system, which is encoded by the sufRBDCSU operon, is the sole Fe-S cluster assembly system in the genus Streptomyces. Streptomyces avermitilis is the industrial producer of avermectins, which are widely used as agricultural pesticides and antiparasitic agents. sufR (SAV6324) encodes a putative ArsR-family transcriptional regulator, which was characterized as a repressor of the sufRBDCSU operon in this investigation. Spectroscopy and mass spectrometry demonstrated that anaerobically isolated SufR contained an oxidation-sensitive [4Fe-4S] cluster and existed as a homodimer. Electrophoretic mobility shift assays (EMSAs) and DNase I footprinting analyses revealed that [4Fe-4S]-SufR bound specifically and tightly to a 14-bp palindromic sequence (CAAC-N6-GTTG) in the promoter region of the sufR operon, repressing expression of the sufRBDCSU operon. The presence of the [4Fe-4S] cluster is critical for the DNA-binding activity of SufR. Cys182, Cys195, and Cys223 in the C-terminal region of SufR are essential for [4Fe-4S] cluster coordination, but Cys178 is not. The fourth non-Cys ligand in coordination of the [4Fe-4S] cluster for SufR remains to be identified. The findings clarify the transcriptional control of the suf operon by [4Fe-4S] SufR to satisfy the various Fe-S cluster demands. SufR senses the intracellular Fe-S cluster status and modulates the expression of the sole Fe-S cluster assembly system via its Fe-S cluster occupancy. IMPORTANCE Fe–S clusters function as cofactors of proteins controlling diverse biological processes, such as respiration, photosynthesis, nitrogen fixation, DNA replication, and gene regulation. The mechanism of how Actinobacteria regulate the expression of the sole Fe-S cluster assembly system in response to the various Fe–S cluster demands remains to be elucidated. In this study, we showed that SufR functions as a transcriptional repressor of the sole Fe-S cluster assembly system in the avermectin producer S. avermitilis. [4Fe-4S]-SufR binds to the promoter region of the suf operon and represses its expression. When Fe-S cluster levels are insufficient, SufR loses its [4Fe-4S] cluster and DNA-binding activity. Apo-SufR dissociates from the promoter region of suf operon, and the expression of the suf system is strongly increased by derepression to promote the synthesis of Fe-S clusters. The study clarifies how Streptomyces maintains its Fe-S cluster homeostasis through the activity of SufR to modulate the various Fe-S cluster demands.


Biochimie ◽  
2014 ◽  
Vol 100 ◽  
pp. 61-77 ◽  
Author(s):  
Oliver Stehling ◽  
Claudia Wilbrecht ◽  
Roland Lill

FEBS Journal ◽  
2019 ◽  
Vol 287 (11) ◽  
pp. 2312-2327 ◽  
Author(s):  
Veronica Nasta ◽  
Dafne Suraci ◽  
Spyridon Gourdoupis ◽  
Simone Ciofi‐Baffoni ◽  
Lucia Banci

Sign in / Sign up

Export Citation Format

Share Document