Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics

Fuel ◽  
2010 ◽  
Vol 89 (10) ◽  
pp. 3099-3105 ◽  
Author(s):  
Ekrem Buyukkaya
2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Mohamed A. Bassiony ◽  
Abdellatif M. Sadiq ◽  
Mohammed T. Gergawy ◽  
Samer F. Ahmed ◽  
Saud A. Ghani

New induction manifold designs have been developed in this work to enhance the turbulence intensity and improve the mixing quality inside diesel engine cylinders. These new designs employ a spiral-helical shape with three different helical diameters (1D, 2D, 3D; where D is the inner diameter of the manifold) and three port outlet angles: 0 deg, 30 deg, and 60 deg. The new manifolds have been manufactured using three-dimensional printing technique. Computational fluid dynamics simulations have been conducted to estimate the turbulent kinetic energy (TKE) and the induction swirl generated by these new designs. The combustion characteristics that include the maximum pressure raise rate (dP/dθ) and the peak pressure inside the cylinder have been measured for a direct injection (DI) diesel engine utilizing these new manifold designs. In addition, engine performance and emissions have also been evaluated and compared with those of the normal manifold of the engine. It was found that the new manifolds with 1D helical diameter produce a high TKE and a reasonably strong induction swirl, while the ones with 2D and 3D generate lower TKEs and higher induction swirls than those of 1D. Therefore, dP/dθ and peak pressure were the highest with manifolds 1D, in particular manifold m (D, 30). Moreover, this manifold has provided the lowest fuel consumption with the engine load by about 28% reduction in comparison with the normal manifold. For engine emissions, m (D, 30) manifold has generated the lowest CO, SO2, and smoke emissions compared with the normal and other new manifolds as well, while the NO emission was the highest with this manifold.


2014 ◽  
Vol 18 (1) ◽  
pp. 259-268 ◽  
Author(s):  
S.R. Premkartikkumar ◽  
K. Annamalai ◽  
A.R. Pradeepkumar

Nowadays, more researches focus on protecting the environment. Present investigation concern with the effectiveness of Oxygen Enriched hydrogen- HHO gas addition on performance, emission and combustion characteristics of a DI diesel engine. Here the Oxygen Enriched hydrogen-HHO gas was produced by the process of water electrolysis. When potential difference is applied across the anode and cathode electrodes of the electrolyzer, water is transmuted into Oxygen Enriched hydrogen-HHO gas. The produced gas was aspirated into the cylinder along with intake air at the flow rates of 1 lpm and 3.3 lpm. The results show that when Oxygen Enriched hydrogen-HHO gas was inducted, the brake thermal efficiency of the engine increased by 11.06%, Carbon monoxide decreased by 15.38%, Unburned hydrocarbon decreased by 18.18%, Carbon dioxide increased by 6.06%, however, the NOX emission increased by 11.19%.


2014 ◽  
Vol 17 (4) ◽  
pp. 67-76
Author(s):  
Em Van Tong Nguyen ◽  
Khai Le Duy Nguyen

This paper present a study of the effects of duration of injection on emissions and combustion characteristics in a direct injection diesel engine using CFD code KIVA-3V. In this study, duration of injection was also changed from 6o to 12o CA while the injection timing is constant to evaluate the effect on DI Diesel engine performance, indicated specific fuel consumption and particulates and oxides of nitrogen emission. The obtained results indicate that the capacity of the engine reaches its maximum value and NOx and soot emissions is decreased when the duration of injection is in the range of 6o to 9o CA.


Fuel ◽  
2014 ◽  
Vol 115 ◽  
pp. 875-883 ◽  
Author(s):  
Orkun Özener ◽  
Levent Yüksek ◽  
Alp Tekin Ergenç ◽  
Muammer Özkan

Energy ◽  
2016 ◽  
Vol 115 ◽  
pp. 1234-1245 ◽  
Author(s):  
P. Prabhakaran ◽  
P. Ramesh ◽  
C.G. Saravanan ◽  
M. Loganathan ◽  
E. James Gunasekaran

Sign in / Sign up

Export Citation Format

Share Document