Modelling of soot formation in a heavy-duty diesel engine with conditional moment closure

Fuel ◽  
2014 ◽  
Vol 117 ◽  
pp. 309-325 ◽  
Author(s):  
Michele Bolla ◽  
Daniele Farrace ◽  
Yuri M. Wright ◽  
Konstantinos Boulouchos
2021 ◽  
Author(s):  
Shrey Trivedi ◽  
Savvas Gkantonas ◽  
Yuri M. Wright ◽  
Matteo Parravicini ◽  
Christophe Barro ◽  
...  

2017 ◽  
Vol 69 (5) ◽  
pp. 683-689 ◽  
Author(s):  
Zhongping Tang ◽  
Zhengwen Feng ◽  
Peng Jin ◽  
Xisheng Fu ◽  
Hua Chen

Purpose The purpose of this paper is to identify the feature of soot in diesel engine oil and provide a method to stably disperse these soots using effect additives which is benefical for lubricants to pass related engine tests. Design/methodology/approach This paper designed experiments to investigate the dispersant type, treat level and different dispersant interactions which influence on lubricant soot-related viscosity increase. The research work developed an effective dispersant package which can well solve the soot-related viscosity increase, allowing pass Mack T-11 and Mack T-8 engine tests and demonstrated the helpfulness of using a quickly screening method developed by a steel piston diesel engine CA 6DL2-35. Findings The effect of dispersant treat level on the viscosity increase of the oil samples was negligible. Dispersant booster can effectively improve the soot handling ability of heavy-duty diesel engine oils (HDDEO), and the appropriate treat level of dispersant booster can help HDDEO pass Mack T-8 and Mack T-11 engine tests. Practical implications The test results are useful for formulators to select the appropriate dispersants or dispersant booster to develop the HDDEO packages which can meet the modern diesel engine lubrication requirements. Originality/value Most previous studies in this field were carried out on soot formation mechanism and soot-related wear rather than how to solve the soot-related viscosity increasing of HDDEO. This paper describes the soot dispersing requirements of different HDDEO specifications and developed an effective dispersant package which can well deal with Mack T-11 and Mack T-8E standard engine tests soot handling ability requirements.


Author(s):  
Joan Boulanger ◽  
W. Stuart Neill ◽  
Fengshan Liu ◽  
Gregory J. Smallwood

An extension to a phenomenological submodel for soot formation to include soot agglomeration effects is developed. The improved submodel was incorporated into a commercial computational fluid dynamics code and was used to investigate soot formation in a heavy-duty diesel engine. The results of the numerical simulation show that the soot oxidation process is reduced close to the combustion chamber walls, due to heat loss, such that larger soot particles and clusters are predicted in an annular volume at the end of the combustion cycle. These results are consistent with available in-cylinder experimental data and suggest that the cylinder of a diesel engine must be split into several volumes, each of them with a different role regarding soot formation.


Author(s):  
Joan Boulanger ◽  
Fengshan Liu ◽  
W. Stuart Neill ◽  
Gregory J. Samllwood

An extension to a phenomenological sub-model for soot formation to include soot agglomeration effects is developed. The improved sub-model, consisting of six coupled differential equations, was incorporated into a commercial CFD code and used to investigate soot formation in a heavy-duty diesel engine. The results of the numerical simulation show that the soot oxidation process is reduced close to the combustion chamber walls. This is due to the lower charge temperatures encountered as a result of heat transfer to the combustion chamber walls. The sub-model predicts that larger soot particles and clusters are encountered in the annular region close to the combustion chamber walls at the end of the combustion cycle. These results are consistent with available in-cylinder experimental data on soot.


2013 ◽  
Vol 185 (5) ◽  
pp. 766-793 ◽  
Author(s):  
Michele Bolla ◽  
Yuri M. Wright ◽  
Konstantinos Boulouchos ◽  
Giulio Borghesi ◽  
Epaminondas Mastorakos

Author(s):  
Meng Tang ◽  
Yuanjiang Pei ◽  
Yu Zhang ◽  
Michael Traver ◽  
David Cleary ◽  
...  

Gasoline compression ignition (GCI) engine technology has shown the potential to achieve high fuel efficiency with low criteria pollutant emissions. In order to guide the design and optimization of GCI combustion, it is essential to develop high-fidelity simulation tools. Building on the previous work in computational fluid dynamic (CFD) simulations of spray combustion, this work focuses on predicting the soot emissions in a constant-volume vessel representative of heavy-duty diesel engine applications for an ultra-low sulfur diesel (ULSD) and a high reactivity (Research Octane Number 60) gasoline, and comparing the soot evolution characteristics of the two fuels. Simulations were conducted using both Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) turbulence models. Extensive model validations were performed against the experimental soot emissions data for both fuels. It was found that the simulation results using the LES turbulence model agreed better with the measured ignition delays and liftoff lengths than the RANS turbulence model. In addition, two soot models were evaluated in the current study, including an empirical two-step soot formation and oxidation model, and a detailed soot model that involves poly-aromatic hydrocarbon (PAH) chemistry. Validations showed that the separation of the flame lift-off location and the soot lift-off location and the relative natural luminosity signals were better predicted by the detailed soot model combined with the LES turbulence model. Qualitative comparisons of simulated local soot concentration distributions against experimental measurements in the literature confirmed the model’s performance. CFD simulations showed that the transition of domination from soot formation to soot oxidation was fuel-dependent, and the two fuels exhibited different temporal and spatial characteristics of soot emissions. CFD simulations also confirmed the lower sooting propensity of gasoline compared to ULSD under all investigated conditions.


Sign in / Sign up

Export Citation Format

Share Document